Formulas:

$\vec{F}_{2}=\frac{q_{1} q_{2}}{r_{21}{ }^{2}} \hat{\mathrm{r}}_{21}$ Coulomb's law ; $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{F}} / \mathrm{q}_{0}$ electric field $; \overrightarrow{\mathrm{E}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\int \frac{\rho\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right)\left(\hat{\mathrm{r}}-\hat{\mathrm{r}}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}} \mathrm{dx} \mathrm{dx}^{\prime} \mathrm{dy} \mathrm{dz}^{\prime}$
$\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{a}}=4 \pi q_{\text {enc }}=4 \pi \int \rho d v \quad$ Gauss' law $\quad 1$ charge at the origin $: \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}})=\frac{\mathrm{q}}{\mathrm{r}^{2}} \hat{r}$
Linear, surface, volume charge density : $d q=\lambda d s, \quad d q=\sigma d A \quad, \quad d q=\rho d V$
Electric field of : charge : $E=\frac{q}{r^{2}} ; \quad$ line of charge $: E=\frac{2 \lambda}{r} ; \quad$ sheet of charge : $E=2 \pi \sigma$
Potential of single charge $\mathrm{q}: \phi(\vec{r})=\frac{q}{r}$; charge distribution: $\phi(\vec{r})=\int \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} \mathrm{dx}^{\prime} \mathrm{dy}^{\prime} \mathrm{dz}^{\prime}$
$\phi(x, y, z)-\phi\left(x_{0}, y_{0}, z_{0}\right)=-\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)} \vec{E} \cdot d \vec{s} \quad ; \quad \vec{E}=-\nabla \phi \quad ; \quad \nabla^{2} \phi=-4 \pi \rho \quad ; \quad \operatorname{div} \vec{E}=4 \pi \rho$
$\operatorname{div} \vec{E}=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z} \quad ; \quad \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
energy of 3 charges: $U=\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{2} q_{3}}{r_{23}}+\frac{q_{1} q_{3}}{r_{13}}$; energy of q in potential $\phi: U=q \phi(x, y, z)$

Problem 1 (10 pts)
Consider the 3 charges along the x -axis at distance a from each other of same magnitude and sign as shown in the figure:

assume the center charge is at $x=0$.
(a) Make a plot of the potential $\phi(\mathrm{x})$ versus x extending from large negative x to large positive x.
(b) Locate 2 points in the graph where if you put a test charge q_{0} it will be in equilibrium. Will the equilibrium be stable or unstable? Answer separately for $\mathrm{q}_{0}>0$ and $\mathrm{q}_{0}<0$. (assume the test charge can only move along the x -ais.
(c) Locate a point on the x axis to which you can bring a test charge q_{0} from infinity without doing any net work.
Justify all your answers.

Problem 2 (10 pts)
An infinitely long cylinder of radius R has a non-uniform charge distribution ρ in its interior. The potential for $\mathrm{r}<\mathrm{R}$ (r is the distance to the cylinder axis) is given by $\phi(x, y, z)=x^{4}+2 x^{2} y^{2}+y^{4}$
(a) Find the charge density $\rho(x, y, z)$ inside the cylinder. Show that it can be expressed as $\rho(\mathrm{r})$.
(b) Find the electric field at $\mathrm{r}=\mathrm{R}$ using the charge density found in (a) and Gauss' law. Show all the steps.
Hint: $\int d x d y \cdot f\left(\sqrt{x^{2}+y^{2}}\right)=2 \pi \int d r \cdot r \cdot f(r)$
(c) Find the electric field $\vec{E}(x=R, y=0, z=0)$ directly from the potential ϕ. Explain why your result agrees or disagrees with the result in (b).

Problem 3 (10 pts)

Consider a ring of radius a and total charge q, i.e. linear charge density $\lambda=q /(2 \pi a)$.
(a) Find the potential at point P a distance z along the axis from the center.
(b) Calculate the electric field (in the z direction) at point P from the potential. Make a plot of the electric field E_{z} versus z that includes both positive and negative z .
(c) Calculate the electric field directly from its definition, without using the potential. Explain all steps. Explain why your result does or does not agree with the result of (b).

