4-8
(a) From Equation 4.16 we have $\Delta n \circ 0\left(\frac{\sin \phi}{2}\right)^{-4}$ or $\Delta n_{2}=\Delta n_{1} \frac{\left(\frac{\sin \phi_{1}}{2}\right)^{4}}{\left(\frac{\sin \phi_{2}}{2}\right)^{4}}$. Thus the number of d s scattered at 40 degrees is given by

$$
\Delta n_{2}=(100 \mathrm{cpm}) \frac{\left(\sin \frac{20}{2}\right)^{4}}{\left(\sin \frac{40}{2}\right)^{4}}=(100 \mathrm{cpm})\left(\frac{\sin 10}{\sin 20}\right)^{4}=6.64 \mathrm{cpm} .
$$

Similarly

```
4-8 a)
It should read "sin(phi/2)",
not "sin(phi)/2"
```

$$
\begin{aligned}
\Delta n \text { at } 60 \text { degrees } & =1.45 \mathrm{cpm} \\
\Delta n \text { at } 80 \text { degrees } & =0.533 \mathrm{cpm} \\
\Delta n \text { at } 100 \text { degrees } & =0.264 \mathrm{cpm}
\end{aligned}
$$

(b) From 4.16 doubling $\left(\frac{1}{2}\right) m_{\alpha} v_{a}^{2}$ reduces Δn by a factor of 4. Thus Δn at 20 degrees $=\left(\frac{1}{4}\right)(100 \mathrm{cpm})=25 \mathrm{cpm}$.
(c) From 4.16 we find $\frac{\Delta n_{\mathrm{Cu}}}{\Delta n_{\mathrm{Au}}}=\frac{Z_{\mathrm{Cu}}^{2} N_{\mathrm{Cu}}}{Z_{\mathrm{Au}}^{2} N_{\mathrm{Au}}}, Z_{\mathrm{Cu}}=29, \mathrm{Z}_{\mathrm{Au}}=79$.

$$
\left.\begin{array}{rl}
\begin{array}{rl}
N_{\mathrm{Cu}} & =\text { number of Cu nuclei per unit area } \\
& =\text { number of Cu nuclei per unit volume }{ }^{*} \text { foil thickness } \\
& =\left[\left(8.9 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(\frac{6.02 \times 10^{23} \text { nuclei }}{63.54 \mathrm{~g}}\right)\right] t=8.43 \times 10^{22} \mathrm{t}
\end{array} \\
N_{\mathrm{Au}} & =\left[\left(19.3 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(\frac{6.02 \times 10^{23} \text { nuclei }}{197.0 \mathrm{~g}}\right)\right] t=5.90 \times 10^{22} t
\end{array}\right\}
$$

4-9 The initial energy of the system of α plus copper nucleus is 13.9 MeV and is just the kinetic energy of the α when the α is far from the nucleus. The final energy of the system may be evaluated at the point of closest approach when the kinetic energy is zero and the potential energy is $k(2 e) \frac{Z e}{r}$ where r is approximately equal to the nuclear radius of copper. Invoking conservation of energy $E_{i}=E_{f}, K_{a}=(k) \frac{2 Z e^{2}}{r}$ or

$$
r=(k) \frac{2 Z e^{2}}{K_{\alpha}}=\frac{(2)(29)\left(1.60 \times 10^{-19}\right)^{2}\left(8.99 \times 10^{9}\right)}{\left(13.9 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}=6.00 \times 10^{-15} \mathrm{~m}
$$

4-11 $\frac{1}{\lambda}=R\left(\frac{1}{n_{\mathrm{f}}^{2}}-\frac{1}{n_{\mathrm{i}}^{2}}\right)$. For the Balmer series, $n_{\mathrm{f}}=2 ; n_{\mathrm{i}}=3,4,5, \ldots$. The first three lines in the series have wavelengths given by $\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)$ where $R=1.09737 \times 10^{7} \mathrm{~m}^{-1}$.

4-12
The right hand side of the first equation should be
$R\left(1-1 / n^{\wedge} 2\right)$, as in 4-13 (a)

1st line: $\frac{1}{\lambda}=R\left(\frac{1}{4}-\frac{1}{9}\right)=\left(\frac{5}{36}\right) R ; \lambda=\frac{36}{5 R}=656.112 \mathrm{~nm}$
2nd line: $\frac{1}{\lambda}=R\left(\frac{1}{4}-\frac{1}{16}\right)=\left(\frac{3}{16}\right) R ; \lambda=\frac{16}{3 R}=486.009 \mathrm{~nm}$
3rd line: $\frac{1}{\lambda}=R\left(\frac{1}{4}-\frac{1}{25}\right)=\left(\frac{21}{100}\right) R ; \lambda=\frac{100}{21 R}=433.937 \mathrm{~nm}$

4-12 $\frac{1}{\lambda}=R\left(\frac{1-1}{n^{2}}\right)$ where $n=2,3,4, \ldots$ and $R=1.0973732 \times 10^{7} \mathrm{~m}^{-1}$;

$$
\begin{aligned}
& \text { For } n=2: \lambda=R^{-1}\left(1-\frac{1}{2^{2}}\right)^{-1}=1.21502 \times 10^{-7} \mathrm{~m}=121.502 \mathrm{~nm}(\mathrm{UV}) \\
& \text { For } n=3: \lambda=R^{-1}\left(1-\frac{1}{3^{2}}\right)^{-1}=1.02517 \times 10^{-7} \mathrm{~m}=102.517 \mathrm{~nm}(\mathrm{UV}) \\
& \text { For } n=4: \lambda=R^{-1}\left(1-\frac{1}{4^{2}}\right)^{-1}=1.972018 \times 10^{-7} \mathrm{~m}=97.2018 \mathrm{~nm} \text { (UV) }
\end{aligned}
$$

4-13
(a) $\quad \lambda=102.6 \mathrm{~nm} ; \frac{1}{\lambda}=R\left(1-\frac{1}{n^{2}}\right) \Rightarrow n=\frac{R}{\left(R-\frac{1}{\lambda}\right)^{1 / 2}}=\frac{R}{\left(R-\frac{1}{102.6 \times 10^{-9} \mathrm{~m}}\right)^{1 / 2}}=2.99 \approx 3$
(b) This wavelength cannot belong to either series. Both the Paschen and Brackett series lie in the IR region, whereas the wavelength of 102.6 nm lies in the UV region.

4-14
(a) $\quad r_{n}=\frac{n^{2} \hbar^{2}}{m_{e} k e^{2}} ;$ where $n=1,2,3, \ldots$

$$
r_{n}=n^{2} \frac{\left(1.055 \times 10^{-34} \mathrm{Js}\right)^{2}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(9.0 \times 19^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}=(0.0529 \mathrm{~nm}) n^{2}
$$

For $n=1: r_{n}=0.0529 \mathrm{~nm}$
For $n=2: r_{n}=0.2121 \mathrm{~nm}$
For $n=3: r_{n}=0.4772 \mathrm{~nm}$
(b) From Equation 4.26, $v=\left(\frac{k e^{2}}{m_{e} r}\right)^{1 / 2}$

$$
\begin{aligned}
& v_{1}=\left[\frac{\left(8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(0.0529 \times 10^{-9} \mathrm{~m}\right)}\right]^{1 / 2}=2.19 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& v_{2}=1.09 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& v_{3}=7.28 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(c) As $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}, v \ll c$ and no relativistic correction is necessary.

4-15
(a) The energy levels of a hydrogen-like ion whose charge number is 2 is given by $E_{n}=(-13.6 \mathrm{eV}) \frac{\mathrm{Z}^{2}}{n^{2}}=\frac{-54.4 \mathrm{eV}}{n^{2}}$ for $\mathrm{Z}=2 .\left(\mathrm{He}^{+}\right)$

$$
\text { So } \begin{aligned}
E_{1} & =-54.4 \mathrm{eV} \\
E_{2} & =-13.6 \mathrm{eV} \\
E_{3} & =-6.04 \mathrm{eV}, \mathrm{etc} .
\end{aligned}
$$

(b) For $\mathrm{He}^{+}, \mathrm{Z}=2$ so we see that the ionization energy (the energy required to take the electron from the state $n=1$ to the state $n=\infty$ is $E=(-13.6 \mathrm{eV}) \frac{2^{2}}{1^{2}}=\frac{-54.4 \mathrm{eV}}{n^{2}}$ for $Z=2 .\left(\mathrm{He}^{+}\right)$

4-16 For $\mathrm{Li}^{2+}, \mathrm{Z}=3$ from Equation 4.36

$$
E_{n}=-\frac{13.6 \mathrm{Z}^{2}}{n^{2} \mathrm{eV}}=-\frac{122.4}{n^{2} \mathrm{eV}}
$$

$$
\text { So } \begin{aligned}
E_{1} & =-122.4 \mathrm{eV} \\
E_{2} & =-30.6 \mathrm{eV} \\
E_{3} & =-13.6 \mathrm{eV}, \mathrm{etc} .
\end{aligned}
$$

\qquad

$$
\begin{aligned}
r=\frac{n^{2} \hbar^{2}}{Z m_{e} k e^{2}} & =\left(\frac{n^{2}}{Z}\right)\left(\frac{\hbar^{2}}{m_{e} k e^{2}}\right) ; n=1 \\
r & =\frac{1}{Z}\left[\frac{\left(1.055 \times 10^{-34} \mathrm{Js}\right)^{2}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}}\right]=\frac{5.30 \times 10^{-11} \mathrm{~m}}{Z}
\end{aligned}
$$

(a) For $\mathrm{He}^{+}, \mathrm{Z}=2, r=\frac{5.30 \times 10^{-11} \mathrm{~m}}{2}=2.65 \times 10^{-11} \mathrm{~m}=0.0265 \mathrm{~nm}$
(b) For $\mathrm{Li}^{2+}, \mathrm{Z}=3, r=\frac{5.30 \times 10^{-11} \mathrm{~m}}{3}=1.77 \times 10^{-11} \mathrm{~m}=0.0177 \mathrm{~nm}$
(c) For $\mathrm{Be}^{3+}, \mathrm{Z}=4, r=\frac{5.30 \times 10^{-11} \mathrm{~m}}{4}=1.32 \times 10^{-11} \mathrm{~m}=0.0132 \mathrm{~nm}$

4-18
(a) $\quad \Delta E=(13.6 \mathrm{eV})\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right)=12.1 \mathrm{eV}$

4-18 (a) Just use energy conservation 4-18 (b) You must consider the possible intermediate transitions, i.e. a transition either from $n=3$ to $n=1$ directly, or from $n=3$ to $n=2$ and then from $n=2$ to $n=1$
(b) Either $\Delta E=12.1 \mathrm{eV}$ or $\Delta E=(13.6 \mathrm{eV})\left(\frac{1}{1}-\frac{1}{2^{2}}\right)=10.2 \mathrm{eV}$ and

$$
\Delta E=(13.6 \mathrm{eV})\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=1.89 \mathrm{eV}
$$

(a) $\Delta E=(-13.6 \mathrm{eV})\left(\frac{1}{n_{\mathrm{i}}^{2}}-\frac{1}{n_{\mathrm{f}}^{2}}\right)=(-13.6 \mathrm{eV})\left(\frac{1}{9}-\frac{1}{4}\right)=1.89 \mathrm{eV}$
(b) $E=\frac{h c}{\lambda} \Rightarrow \lambda=\frac{h c}{E}=\left(4.14 \times 10^{-15} \mathrm{eV} \mathrm{s}\right) \frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.89 \mathrm{eV}}=658 \mathrm{~nm}$
(c) $c=\lambda f \Rightarrow f=\frac{c}{\lambda}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{657 \times 10^{-9} \mathrm{~m}}=4.56 \times 10^{14} \mathrm{~Hz}$
$4-20 \quad \Delta E=(-13.6 \mathrm{eV})\left(\frac{1}{n_{\mathrm{f}}^{2}}-\frac{1}{n_{\mathrm{i}}^{2}}\right)$
(a) $\Delta E=(-13.6 \mathrm{eV})\left(\frac{1}{25}-\frac{1}{16}\right)=0.306 \mathrm{eV}$
(b)

$$
\Delta E=(-13.6 \mathrm{eV})\left(\frac{1}{36}-\frac{1}{25}\right)=0.166 \mathrm{eV}
$$

(a) For the Paschen series; $\frac{1}{\lambda}=R\left(\frac{1}{3^{2}}-\frac{1}{n_{i}^{2}}\right)$; the maximum wavelength corresponds to $n_{\mathrm{i}}=4, \frac{1}{\lambda_{\max }}=R\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right) ; \lambda_{\max }=1874.606 \mathrm{~nm}$. For minimum wavelength, $n_{\mathrm{i}} \rightarrow \infty$, $\frac{1}{\lambda_{\text {min }}}=R\left(\frac{1}{3^{2}}-\frac{1}{\infty}\right) ; \lambda_{\min }=\frac{9}{R}=820.140 \mathrm{~nm}$.
(b) $\quad \frac{h c}{\lambda_{\min }}=\frac{\left(\frac{h c}{1874.606 \mathrm{~nm}}\right)}{1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}}=0.6627 \mathrm{~nm}$ $\frac{h c}{\lambda_{\min }}=\frac{\left(\frac{h c}{820.140 \mathrm{nmm}}\right)}{1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}}=1.515 \mathrm{~nm}$

4-22

$$
\begin{aligned}
& E=K+U=\frac{m v^{2}}{2}-\frac{k e^{2}}{r} . \text { But } \frac{m v^{2}}{2}=\left(\frac{1}{2}\right) \frac{k e^{2}}{r} . \text { Thus } E=\left(\frac{1}{2}\right)\left(\frac{-k e^{2}}{r}\right)=\frac{U}{2}, \text { so } \\
& U=2 E=2(-13.6 \mathrm{eV})=-27.2 \mathrm{eV} \text { and } K=E-U=-13.6 \mathrm{eV}-(-27.2 \mathrm{eV})=13.6 \mathrm{eV}
\end{aligned}
$$

4-23
(a) $\quad r_{1}=(0.0529 \mathrm{~nm}) n^{2}=0.0529 \mathrm{~nm}($ when $n=1)$
(b) $\quad m_{e} v=m_{e}\left(\frac{k e^{2}}{m_{e} r}\right)^{1 / 2}$
$m_{e}=\left[\frac{\left(9.1 \times 10^{-31} \mathrm{~kg}\right)\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)}{5.29 \times 10^{-11} \mathrm{~m}}\right]^{1 / 2} \times\left(1.6 \times 10^{-19} \mathrm{C}\right)$
$M_{e} v=1.99 \times 10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(c) $L=m_{e} v r=\left(1.99 \times 10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s}\right)\left(5.29 \times 10^{-11} \mathrm{~m}\right), L=1.05 \times 10^{-34}\left(\mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}\right)=\hbar$
(d) $K=|E|=13.6 \mathrm{eV}$
(e) $\quad U=-2 K=-27.2 \mathrm{eV}$
(f) $E=K+U=-13.6 \mathrm{eV}$

4-23 (d) and (e) These equations may be found by setting the electrostatic force equal to the centripetal force on the electron, and then using the definitions of kinetic and electrostatic potential energy.

4-23 (b) You may find the velocity either by the quantization condition on angular momentum, or by setting the electrostatic force equal to the centripetal force on the electron.

4-24
(a) $\frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)=R\left[(1)^{2}-\left(\frac{1}{3}\right)^{2}\right]=\frac{8 R}{9} ; \lambda=\frac{9}{8 R}=\frac{9}{(8)\left(1.09737 \times 10^{7} \mathrm{~m}^{-1}\right)}=102.517 \mathrm{~nm}$
(b) As the atom is initially at rest, the momentum of the photon, $\frac{h}{\lambda}$, must equal the recoil momentum of the atom:

$$
\begin{aligned}
& P_{\text {atom }}=\frac{h}{\lambda}=\frac{6.63 \times 10^{-34} \mathrm{~J} / \mathrm{s}}{102.517 \mathrm{~nm}}=6.47 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
& K_{\text {atom }}=\frac{p^{2}}{2 m}=\frac{\left(6.47 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s}\right)}{(2)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)}=1.25 \times 10^{-26} \mathrm{~J}=7.83 \times 10^{-8} \mathrm{eV}
\end{aligned}
$$

This tiny amount of energy comes from the photon's energy making λ slightly longer than 102.517 nm .

4-25
(a) $\Delta E=h f=(13.6 \mathrm{eV})\left(\frac{1}{n_{\mathrm{f}}^{2}}-\frac{1}{n_{\mathrm{i}}^{2}}\right)$ or $f=(13.6 \mathrm{eV})\left(\frac{\frac{1}{9}-\frac{1}{16}}{4.14 \times 10^{-15} \mathrm{eV} \mathrm{s}}\right)=1.60 \times 10^{14} \mathrm{~Hz}$
(b) $\quad T=\frac{2 \pi r_{n}}{v}$ so $f_{\mathrm{rev}}=\frac{1}{T}=\frac{v}{2 \pi r_{n}}$. Using $v=\left(\frac{k e^{2}}{m_{e} r_{n}}\right)^{1 / 2}, f_{\mathrm{rev}}=\left(\frac{k e^{2}}{m r_{n}}\right)^{1 / 2}$. For $n=3$,
$r_{3}=(3)^{2} a_{0}$ and
4-25 (b) The period T is defined simply as the time it takes for the electron to complete one revolution around the proton. The frequency of rotation is defined accordingly as the inverse of T .

$$
\begin{aligned}
& f_{\text {rev }}=\frac{\left(8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{\frac{\left[\left(9.11 \times 10^{-31} \mathrm{~kg}\right)(9)\left(5.29 \times 10^{-14} \mathrm{~m}\right)\right]^{1 / 2}}{(2)(3.14)(9)\left(5.29 \times 10^{-11} \mathrm{~m}\right)}} \\
& f_{\text {rev }}=2.44 \times 10^{14} \mathrm{~Hz}(n=3) \\
& f_{\text {rev }}=1.03 \times 10^{14} \mathrm{~Hz}(n=4)
\end{aligned}
$$

Thus the photon frequency is about halfway between the two frequencies of the revolution.

Lyman series has $n_{f}=1, \lambda_{\text {max }}$ has $n_{i}=2 ; \lambda_{\text {min }}$ has $n_{i}=\infty$

$$
\begin{aligned}
& \frac{1}{\lambda_{\max }}=R\left(\frac{1}{n_{\mathrm{f}}^{2}}-\frac{1}{n_{\mathrm{i}}^{2}}\right)=R\left(\frac{1-1}{2^{2}}\right)=\frac{3 R}{4} \\
& \lambda_{\max }=\frac{4}{3 R}=\frac{4}{(3)\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)}=121.5 \mathrm{~nm} \\
& \lambda_{\min }=\frac{1}{R}=91.16 \mathrm{~nm}
\end{aligned}
$$

As shown on the inside front cover, the visible spectrum begins at about 350 nm , so the Lyman series is in the UV.

Call the energy available from the $n=2$ to $n=1$ transition ΔE :

$$
\Delta E(13.6 \mathrm{eV}) \mathrm{Z}^{2}\left(\frac{1}{n_{\mathrm{f}}^{2}}-\frac{1}{n_{\mathrm{i}}^{2}}\right)=(13.6)(24)^{2}\left(\frac{1}{1}-\frac{1}{4}\right)=5875 \mathrm{eV}=5.875 \mathrm{keV}
$$

The kinetic energy K of the Auger electron is equal to 5.875 keV minus the energy required to ionize an electron in the $n=4$ state, $E_{\text {ionization }}$. Thus,

$$
K=5.875 \mathrm{keV}-E_{\text {ionization }}=5.875 \mathrm{keV}-(13.6 \mathrm{eV}) \frac{Z^{2}}{4}=5.385 \mathrm{keV}
$$

4-29
(a) $\lambda=\frac{C_{2} n^{2}}{n^{2}-2^{2}}$ so $\frac{1}{\lambda}=\left(\frac{1}{C_{2}}\right) \frac{n^{2}-2^{2}}{n^{2}}=\left(\frac{1}{C_{2}}\right)\left(\frac{1-2^{2}}{n^{2}}\right)$ or $\frac{1}{\lambda}=\left(\frac{2^{2}}{C_{2}}\right)\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)=R\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)$ where $R=\frac{2^{2}}{C_{2}}$.
(b)

$$
R=\frac{2^{2}}{36545.6 \times 10^{-8} \mathrm{~cm}}=109720 \mathrm{~cm}^{-1}
$$

(a) Both momentum and energy must be conserved. Momentum: $M v=\frac{E_{\text {photon }}}{c}$, energy: $E=E_{\text {photon }}+\frac{1}{2} M v^{2}$ where M is the atom's mass, v is its recoil velocity, $E_{\text {photon }}$ is the photon's energy and E is the energy difference between the $n=3$ and $n=1$ states. Combining equations, $v^{2}+2 c v-\frac{2 E}{M}=0$ and using the quadratic formula,

$$
v=\frac{-2 c \pm\left(\frac{4 c^{2}+8 E}{M}\right)^{1 / 2}}{2}=c\left[-1 \pm\left(\frac{1+2 E}{M c^{2}}\right)^{1 / 2}\right]
$$

For $\frac{2 E}{M c^{2}} \ll 1, v \cong \frac{E}{M c}$ or $v \cong \frac{-2 c-E}{M c}$, the second of which is non physical. Thus in general, $v \equiv \frac{E}{M c}$. For the $n=3$ to $n=1$ transition in particular,

