
PHYSICS 2B  -  Lecture Notes 
 

Ch. 34: Maxwell’s Equations and Electromagnetic Waves 
  
Preliminaries 
 
 Arguably the most astounding result of classical electromagnetic theory was the prediction of 
electromagnetic waves. By far the vast majority of the information we receive about world comes in this 
form. From the microwave remnants of the creation of the universe, to the narrow frequency range to 
which our eyes are sensitive, to the gamma rays that signal that a black hole has devoured a star, all of 
these are electromagnetic waves that differ only in frequency. 
 
Maxwell’s Equations 
 
 These are the four equations that summarize all of classical electromagnetic theory and we have 
already encountered them. These are: 
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Maxwell’s Modification of Ampere’s Law  
 
 Maxwell was troubled by Ampere’s law in one particular situation. In a circuit with a capacitor, 
current could flow in the outer circuit even though no current was flowing in the interior of the 
capacitor, so that the current was not continuous around the circuit. How then to apply Ampere’s law? 
Maxwell reasoned that in charging the capacitor, there was an effective current between the plates.  
 

 Recall that the field between the plates of a capacitor is, 
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 2 
where q is the charge on one of the capacitor plates and φE is the electric flux through the area of the 
plates. (Recall that although Gauss’s law is taken over a closed surface, the electric field is zero outside 
a capacitor.) Then writing 
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Maxwell denoted this last term the displacement current and included it with the true current in 
Ampere’s law (1861). We then have, 
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Mathematical Digression:  The Wave Equation 
 
 Propagating waves occur in virtually every area of Physics. The simplest example is a wave that 
propagates with a constant speed without change of shape. In one dimension, such a wave can be 
written, 
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For such a wave, we note that, 
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This is the one-dimensional wave equation. 
 
 The quantity,  c,  has the dimension of length/time or velocity. To determine its significance, we 
measure the amplitude of the wave at a position z and at a time t to be  
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After a time interval Δt, we measure the amplitude of the wave at a new position z+Δz to be, 
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interval Δt, the wave will have moved a distance z c t! = ! , without change in shape. Therefore, the 
quantity c in the wave equation is the velocity of propagation of the wave. (The Latin word for speed is 
celeritas.) 
 
Now, back to Maxwell’s equations. 
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Maxwell’s Equations in Vacuum 
 
 In a vacuum there are no true charges or currents, so that ρ and I are both zero. Then Maxwell’s 
equations become, 
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From Maxwell’s Equations to the Wave Equation 
 
 We now show that Maxwell’s equations lead directly to wave-like solutions. We take the 
direction of the electric field to be the x-axis. With a Gaussian surface that is a flattened cylinder with its 
axis parallel to x-axis. The top and bottom have area A and its height is δx. Gauss’s law yields 
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Therefore, the electric field can change only in a direction perpendicular to x, which we denote as z. A 
third direction, y, is chosen so that (x,y,z) form a right-handed triad. Next, we imagine a rectangular path 
with two sides of length, h, parallel to the x-axis and two sides of length, δz, parallel to the z-axis. Then 
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Then, by Faraday’s law, 
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 Similarly, a flat cylinder with its axis parallel to the y-axis serves as a Gaussian surface for the 
magnetic Gauss’s law, yields 
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We then invoke Ampere’s’s law using a rectangular path with two sides of length h parallel to the y-axis 
and the other two of length δz parallel to the z-axis to obtain 
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 The two equations, 
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Therefore, the components of the electric and magnetic fields in vacuum both obey the wave equation. 
 
 
Electromagnetic Waves 
 
 We have seen that Maxwell’s equations lead to the wave equations, 
 

2 22 2

0 0 0 02 2 2 2
0       and      0 

y yx x
B BE E

z t z t
µ ! µ !

" "" "
# = # =

" " " "
. 

A number of results follow immediately: 
 
 

1. The electric and magnetic fields both obey the wave equation with a propagation velocity 
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This is the velocity of light in vacuum, which confirmed for the first time that light is an 
electromagnetic wave. 

 
 

2. The electric field, the magnetic field and the propagation direction form a right-handed triad. 
That is, the electromagnetic wave is transverse, with the oscillations perpendicular to the 
direction of propagation. 

 
3. The electric and magnetic fields are in phase. 
 
4.        A wave can be characterized by a wavelength, λ and a frequency f such that c f!= .          
        That is, electromagnetic waves come in an enormous range of wavelengths, from gamma  
         rays with wavelengths of a few picometers to radio waves with wavelengths of hundreds of 
         kilometers. All propagate with the same speed, c. 
 
The prediction of electromagnetic waves was confirmed by Hertz in 1888 and is regarded as one of 
the greatest triumphs of classical electromagnetic theory. 


