
PHYSICS 2B  -  Lecture Notes 
 

Ch. 30: Sources of the Magnetic Field 
 
Preliminaries 
 
 In the last section, we studied the force on a current from an existing magnetic field. Here we 
will examine how the magnetic fields are produced. 
 
 In 1820, Oersted made the first discovery of the connection between electricity and magnetism. 
Oersted gave public lectures about the science of the day illustrated by spectacular demonstrations. The 
highlight of his show was his proof that electricity and magnetism were NOT related. He placed a 
compass next to a current carrying wire such that the wire lay in the rotation plane of the compass 
needle. He reasoned that any magnetic field associated with the current carrying wire would cause the 
compass needle to align itself parallel to the wire. One evening, Oersted’s assistant placed the compass 
so that its rotation plane did not contain the wire. When the current was turned on, the compass aligned 
itself perpendicular to the wire. Oersted changed his lecture and took credit for this discovery. The name 
of the assistant is lost to history. 
 
The Biot-Savart Law  
 
 Within weeks of Oersted’s discovery, Biot and Savart, working together, were able to determine 
the dependence of the magnetic field produced by a long, straight wire to be 
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where I is the current in the wire and y is the perpendicular distance to the wire. The direction of the 
field was found to be given by a second right-hand rule:  
 
 If a current carrying wire is grasped with the right hand, with the thumb pointing in the direction 
 of the current, the fingers will point in the direction of the field produced. 
 
 From these and other observations, the magnetic field contribution from a differential line 
segment carrying a current, I, at a field point, rr , relative to the line segment was inferred to be, 
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This form is now called the Biot-Savart Law. The constant K will be determined by the choice of current 
units. 
 
Applications 
 
About an Infinitely Long Wire 
 
 We want the field at a distance y above a wire. The contribution from a length dx of the wire is  
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Using the table in Appendix A to evaluate the integral, we find that the field due to the entire wire is 
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On the Axis of a Current Loop 
 
 We use the Biot-Savart law to compute the field on the axis of a circular loop of radius a, a 
distance x above the plane of the loop. The magnitude of the field contribution on the axis is, 
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An Infinite  Solenoid 
 
 A solenoid is cylinder of radius a about which a wire, carrying a current I0, is uniformly wound 
with n closely spaced turns per unit length of the solenoid. We can compute the field on the solenoid 
axis as a superposition of contributions from current loops each carrying a current 
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Using the result above for the field due to a current loop, we have 
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where the integral is the same one that appeared in the example of the infinitely long wire. It is 
interesting that this result does not depend on the radius of the solenoid. 
 
 
Defining the Current Unit 
 
 Consider two long parallel wires each carrying the same current, I. The magnetic field produced 
by the first wire is given by, 

2KI
B

y
= . 



 3 
The force on a length { of the second wire is then, 
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 We may now give a formal definition of current: 
 
A current of one ampere, is that current which if two long,  parallel wires are one meter apart, each 
carrying a current of one ampere, they will exert a force per unit length on one another of  
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The ampere is a base unit, in that it is not defined in terms of anything simpler. In this regard, it has the 
same status as the meter, second and kilogram. With the choice of the ampere as the unit of current in 
the SI system, then 
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Ampere’s Law 
 
 We can easily show that for a circular path about a current-carrying wire, 
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The combination, 4πK, occurs so frequently that we define, 
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µ0 is called the permeability of free space. Ampere’s Law is then written, 
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where the direction of the path integral is that of the right-hand rule.  
 
 We generalize this to a general path by expressing any path as a succession of infinitesimal radial 
and circular segments. Then using the principle of superposition of fields and currents to any distribution 
of current so that,  
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 In this form, Ampere’s law holds for steady currents only. However, with the inclusion of an 
additional term devised by Maxwell, Ampere’s law becomes a very fundamental statement and another 
of Maxwell’s equations.  
 
Application 
 
 In common with Gauss’s law, Ampere’s law can make the evaluation of the field strength in 
cases where symmetry can simplify the path integral. 
 
 
Solenoid 
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 We take as our integration path, a rectangle with two sides of length  parallel to the solenoid 
axis, one inside and the other outside the solenoid, and the other two sides perpendicular to the solenoid 
axis. The field is mainly confined to the interior of the solenoid and parallel to the axis. Therefore the 
only non-zero contribution to the Ampere integral is from the interior side that is parallel to the axis, and 
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The enclosed current will be 
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This is the same result as obtained by direct calculation for the field on the axis of the solenoid. Only 
now this result is independent of the location of the rectangle side inside the solenoid. Therefore, the 
field inside the solenoid is uniform. 
 
Toroid 
 
 A toroid may be thought of as a solenoid bent into a circle of radius r. We want the magnetic 
field on the axis of a toroid wound with a total of N turns, each carrying current I. We apply Ampere’s 
law to a path along the axis, so that. 
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Magnetic Monopoles and Gauss’s Law for Magnetism 
 
 The idea of a magnetic monopole, the analog of isolated electric charge, has been intriguing 
since Maxwell’s formulation of electromagnetic theory. If they were to exist, the equations of electricity 
and magnetism would have a one-to-one correspondence with one another. Further, theoretical 
considerations suggest that magnetic monopoles should have been produced at the time of the big bang. 
Yet, despite extensive experimental investigations, no magnetic monopole has ever been observed.  
 
 In the electrical case, Gauss’s law relates the flux of the electric field through a closed surface to 
electric charge inside the surface, 
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In the magnetic case, with no isolated magnetic “charge”, the corresponding relation for the magnetic 
flux through a closed surface is, 
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for any closed surface A. This is a fundamental statement about the magnetic and will be seen to be the 
third of Maxwell’s equation. 
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Magnetic Materials 
 
 The magnetic properties of materials arise at the atomic level. In the simple planetary model of 
the atom, the orbiting electron constitutes a current and hence a magnetic dipole with its magnetic 
moment pointing opposite to its angular momentum. When an external magnetic field is applied, these 
magnetic moments will tend to align themselves with the applied field. The manner in which the 
material responds to this tendency will distinguish the three types of magnetic materials. 
 
Paramagnetism 
 
 In these materials, the atomic moments tend to align with the field, increasing the field inside the 
material. The atoms, however, interact weakly with one another, so that collisions and thermal 
excitations prevent the overall alignment from getting too large. Because the magnetic dipoles align with 
the applied field, the potential energy of the dipole is negative and the material is weakly attracted to the 
source of the external field. 
 
Ferromagnetism 
 
 In ferromagnetic materials the atoms interact strongly with one another creating domains in the 
material in which the alignment of the atomic moments is almost total, even in the absence of an 
external field. With the application of an external field, the domains align with one another, creating a 
very strong internal field. 
 
 
Diamagnetism 
 
 In these materials the atomic moments cancel one another totally in the absence of an external 
field. When a field is applied, however, the atomic moments are altered so that the internal field induced 
by the external field opposes the applied field, so that the material is repelled by the external field. A 
simplified classical explanation of this phenomenon follows. 
 
 An applied magnetic field is directed into the page. The diamagnetic material consists of equal 
numbers of clockwise and counter-clockwise circular atomic currents. These currents have radius r and 
angular velocity, ω, so that the atomic magnetic moments are 
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For the counter-clockwise currents, the force from the applied field is in the same direction as the atomic 
binding force and causes the angular velocity to increase, which in turn increases the magnetic moment 
in the direction opposing the applied field. For clockwise currents, the angular velocity is reduced, 
which reduces the magnetic moment in the direction of the applied field. The net effect is to induce a 
magnetic moment in the material, which is opposite to the applied field and leads to a repulsive force. 
 
 
 
 
Magnetic Susceptibility 
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 When an external magnetic field is applied to a material, it produces an internal field in the 
material. We represent the relation between these two fields by the introduction of a parameter called the 
relative permeability, where 
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The permeability is usually expressed in terms of the magnetic susceptibility, given by 
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A table of susceptibilities can be found on page 793 of your text. It may be seen that those for 
paramagnets and diamagnets are of the order  10-3 to -6   and are negative for diamagnets. The            
susceptibilities for ferromagnets are many orders of magnitude greater. The entries for ferromagnets are 
at saturation. That is, as the external field is increased, the internal field rises also until all of the 
domains are aligned. This is the situation called saturation. If the external field is now reduced, the 
internal field will drop also but not proportionally. The material retains a “memory” of having been 
magnetized and a plot of the internal field versus the external field is the open loop called the hysteresis  
curve, an example of which is given on page 792 of your text. Finally, we note the entry in the table of 
susceptibilities for a superconductor which has a susceptibility of -1. This perfect diamagnetism will be 
discussed in the next chapter. 
 
  
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 


