Today’s Lecture

Review of Newton’s 39 Law
& Hook’s Law
Application of Newton’s Laws:
Friction

Lecture 9



Example: Using Newton's Third Law

A 12N force is applied to left most of a
ke | 2k | 1kg, 2kg, and a 3kg block as shown.

e 5 s (a) What force does the middle block

exert on the rightmost block, F,;?

12N

s

From Newton’s 2" the acceleration of all of the blocks is:

a = F/myt = 12N/6kg = 2m/s?

Hence the force from the middle block on the 3" block is given by:

Fos = M3a = 3(2) = 6N



Example: Using Newton's Third Law

A 12N force is applied to left most of a

ke | 2k | 1kg, 2kg, and a 3kg block as shown.
e 5 s (b) What force does the first block
exert on the middle block?

12N

s

The acceleration of all of the blocks is a = 2m/s2. The net force of the middle
block can also be determined from Newton’s 3@ and Newton’s 2nd:

Finet = Fio+Fs = Fo—F3 = mea = 2(2) = 4N

From Newton’s 3" F,, = 6N. Hence F, is given by:

F12 = F23-|— Flnet =6+4 = 10N



Example: Using Newton's Third Law

A 2200kg plane is pulling two gliders
down the runway with an acceleration
of 1.9m/s?. The first glider has a mass
of 310kg and the second 260Kkg.

(a) Find the horizontal thrust of the
plane’s propeller.

From Newton’s 2"d the thrust is:

Fihrust = Miotd = (310 + 260 + 2200) x 1.9 = 5263N

(b) Find the tension in the first rope.

Since the only force on the first glider is the tension in the first rope,
from Newton’s 2" we have:

T: =ma=310x1.9 = 589N



Example: Using Newton's Third Law

A 2200kg plane is pulling two gliders
down the runway with an acceleration
of 1.9m/s?. The first glider has a mass
of 310kg and the second 260Kkg.

(c) Find the tension in the second rope.

From Newton’s 3" the tension in the

first rope opposes the motion of the Frete =To—Ti1=ma->Ty,=T;+ma
2"d glider. The acceleration of the all T, = 589 + 260 x 1.9 = 1083N
gliders is 1.9m/s?. Newton’s 2nd:

(d) Find the net force on the plane.

The net force on the first plane is Is this consistent with a=1.9m/s2?
the thrust minus the tension in the
second rope:

= — 2 I
Fret = Frorust — To a = 4180N/2200kg = 1.9m/s< Yes!

Fnet = 5263 — 1083 = 4180N



Hook’s Law and Newton’s Laws

Hook’s Law states that the elastic force of a spring is
proportional to the displacement of the spring (for small

displacements). :

X

D
Where K is the “spring constant™. i @/@;@;@J@?@ﬁ? il
k has units of N/m. ZQ@@@@@F@ i

(c)

|
|
|
|
|
|
|
x<0 :

Hooks law is routinely used to measure the forces on objects in
our every day life, from weight scales to other indicator needle
instruments such as pressure monitors.



Example: Springs in Series with an Additional Mass

Two masses of mass m, and m, are
. connected by a spring with spring
‘ 2ke VIR 3k —i constant k. A force F is applied to the
=== larger of the two masses. (a) How
much does the spring stretch from its

_ _ equilibrium length? (b) Find the net
(a) The acceleration of this system force on the larger mass.

is determined by Newton’s 2"d:

From Hook’s law and Newton’s 2nd,

a = F/(my+my) the displacement of the spring is
c_Mma_ _m F
k M1+ M2 k

(b) The net force on the larger mass is:

Fou = F-kx=(1——"M1_Yp___M g For a force of 15N and a
i (1= wm )F = s vms spring constant of 140N/m:

_ 2 15 _
X = £ 140 = 4.3cm



Example: Hook’s Law

A mass m is in uniform circular motion at angular frequency
w on a spring, which displaces a distance r-r,. What is the

constant Kk of the spring?

The displacement is relative to the

“unstretched or compressed’ length of the r .3 s
spring. Thus the force: J000000
F=-k(r-r) \

P'PO
But this force is equal and opposite to the centripetal force for

uniform circular motion which points outward:

2
v

F=m— where v=rw
r
: r , | Remember that the change
Equating them: k = mm~ | in asprings length is NOT
=T the springs length!




Example: Three Springs

b = Three identical springs of equal unstretched length | and
= 1;, spring constant k are connected to equal masses m as
= shown. A force is applied to give the top of the upper

[ 'i spring that causes an acceleration a of the entire system.
5’ Determine the length of each spring.

From Newton’s 2" the force, tension, that induces the

‘ acceleration of the entire system is:
L F =3ma

Hence the tension in the spring attached to the first

= I t) block is:
\_/ (lowest) block is =

Flzma=§

The length of this spring mustbe: |, = | +x, = | + % I+ %



Example: Three Springs

§ 2 Three identical springs of equal unstretched length | and
= ‘;, spring constant k are connected to equal masses m as
= shown. A force is applied to give the top of the upper

[ 'i spring that causes an acceleration a of the entire system.
o Determine the length of each spring.

= The net force on the second block is the tension In the
‘ second spring minus the tension in the first spring:

Fonet = F2—F1=ma -> F>, =2ma
u The length of the second spring must be:

_ 1. F2 _ . 2ma
I2—I+x2—l+k = | + "



Example: Three Springs

§ 2 Three identical springs of equal unstretched length | and
= ‘;, spring constant k are connected to equal masses m as
= shown. A force is applied to give the top of the upper

[ 'i sppring that causes an acceleration a of the entire system.
?’ Determine the length of each spring.

The net force on the third block is the force F —F,. Hence
‘ the tension in the top spring, F, is

F-F; =ma - F =3ma
\_/ The length of the third spring must be:
_ _ F _ 3ma
I3—I+x3—l+k | + %

What changes If there Is a uniform gravitational field? a — g+ a



Example: Springs in (a) Parallel and (b) Series

(a) Two springs which have the same

L@@@@@Jfl unstretched length but different spring

( | constants, k, and k, , are connected side-by-side.
Q@@Q@j Find the new effective spring constant.

If the springs are compressed/stretched an
equal distance x from equilibrium then the

:_@@’—@—%@@@Q@% restoring force is simply:

1)

F = —kix —kox = —(K1 + K2)X = —KegX

Thus if two springs are arranged in parallel (a) the effective spring
constant is simply a sum of the two spring constants.



Example: Springs in (a) Parallel and (b) Series
(b) Two springs have different spring constants
L@@@@@@J}_J K, and k, and are connected end-to-end. Find the

l@@@@@f new effective spring constant.

Now consider the forces acting on the
springs in (b). From Newton’s 3" the springs
are pulling/pushing on each other with equal

~00000,—000000~ strength. Hence the force, F, of
|

tension/compression in both springs is equal.

1)

Summing the displacements of the springs: Hence the effective spring
constant Is:

Ax1+Ax2:k£1+k—F2:F(k%+k%> F =

Keft = Ax = AX1 + AX2

AX, + AX, is the total displacement of the klﬁ _ AX EAXZ — k% 4 k%
€

springs connected in series, (b).




Example: Springs in (a) Parallel and (b) Series

L_ 0000 To summarize, two springs connected in parallel
@@@@‘@f each have the same displacement. This means

Q@@Q@f that their restoring forces add, and the effective
spring constant Is:

Ket = K1 + k>

() If the spring are connected in series, then
from Newton’s 3" they each experience the
same restoring force and the displacement
IS the sum of the individual displacements.

: : .. The effective spring constant for this case Is:
Which configuration is IVe spring | |

stiffer? . . ok
4,1 _ 1K2
B o o T Rk




Example: Springs in Parallel Plus Series

Consider the combination of springs shown

-k . . :
[P— _

000000~ ™M the figure with k; = 10N/cm and

| Ul ~ k, =20N/cm. Find the effective spring

@‘@E@@@f constant for this combination.

- — 00

The effective spring constant for 1 1 .1
the first two springs in series Is: K 1eff ki ko

The effective spring constant for

the last two springs in parallel is: Kaett = 2Ky

The effective spring constant for these two effective spring constants is:

1 _ 1 1 _ 1 1 1 3ka+ 2Ky
Ket  Kiot | Kaet K1 ' Ko ' 2ki  2Kiko
For the given spring constants: | _ _ 2Kikp 400 N _ cnyem

et~ 3k, +2k;, 80 CmM



Chapter 6

Using Newton’s Laws

Note, we have already begun to introduce some of the
material in Chapter 6, such as problems including forces in
two dimensions.

We will focus today on:
Formal definition of Free Body Diagrams
Definition and inclusion of Friction force.
Tension in a string.



Free Body Diagrams

These are diagrams of all forces acting on an object at a single
time. You’ve already done this occasionally, but here are a
few points which reinforce their use.

Show vectors of every force
that acts on the body from
other bodies only.

Never include two counter
forces (Newton’s 3rd) in the
same diagram.

—mg

A “raw” free body
Do not include forces this diagram of a block on an

body imparts to others. incline plane.



The Normal Force

When a body pushes against a surface, a component of force
points directly into that surface at a right angle to the surface.
The unit vector along the direction outward from the surface
is called the “normal’ and is written 7.

By Newton’s 3rd Law we know
that a corresponding force acts
equal and opposite, outward

from the surface. This force is

called the Nor@al Force, We
call this force M.

The normal force determines the magnitude of the Friction
Force between the body and the surface.



What is Friction?

When a body is in contact with a surface, bonding and roughness
between the surface and the contact point of the body cause a
resistance to sliding along that surface.

This resistance can be represented by a net friction force.

The friction force is always opposite to the velocity of the body.
For a sliding body it is along the surface perpendicular to N.

The magnitude of the friction
force is proportional to the

normal force.
F.=uN

F
— >

i

4_

—

I

;
u is dimensionless. Remember F; points along the surface!



The Two Types of Friction

When a body is in contact with a surface and does not move,
the friction force is different for the same pushing force than
when the body is sliding along the surface. These two

magnitudes of friction are called Static and Kinetic Friction,
respectively. Typically, pe>0c

QU

L = V=V +at
V = O E}?‘ =
E— = ma
Y F =0 : }
Static ~ NOTE! Kinetic r
— _ : a = nel
a=0 -
FJ‘S = MfSN FfK = Iu’jKN
— 1 — N
— i
Ff Ff



The Two Types of Friction

The fact that p>uq is apparent in transition from a
stationary object to a moving one with an increasing pushing

force.
Breakaway
‘uSN ,,,,,,,,,,,,,,,,,,,,, \*
Accelerating
S v
é ukN .......................
=
=
Time
F m -
—_— = > 0
N «
l e
F After
f
breakaway

Before the object breaks away and begins
moving, the applied force is exactly
countered by a static frictional force by
Newton’s 3rd. After break away, the object
will accelerate. The frictional force will
adjust to the lower Kkinetic value once the
object is in motion. If the applied force is
reduced to match the frictional force, the
velocity will be constant.

(Assumes applied force adjusted down)

If the applied force remains
greater than the friction force, the
object will accelerate.



Tension in a String

When a string is attached to —

a body and pulled on one m, »FT C ey,
side by a force, the string S

equally pulls on the body in I, *p

the opposite direction (3rd 1
Law). This force is called 2

the tension force. l F,

Two action-reaction pairs exist, one at each end. The
tension force (always) points inward to the string at the
two ends of the string, while imparted the forces point out.

If the string wraps around a frictionless and massless
pulley, the force is transferred along the string. Thus the
“positive direction’ must follow along the string.



Example: Tension in a String

A mass of Skg hangs from a string
attached via a frictionless massless
pulley to a mass of 10kg which
rests on a table. How heavy does
the hanging mass have to be to
cause the other mass to move if the
coefficient of static friction is 0.3?7
Does it move?

The tension force is [’

m,

Fy

T1=_FT2=Fg=m2g

t
-aff—

This force is imparted to the mass on the table, and points against the

friction force:

F,<pN=pumg

Thus, for the mass to overcome the static friction

Fri= Fr> pu.mig m, = ugm,

thus

m,g = isi,g

m, =(0.3)(10kg) = 3.0kg

Yes it moves!

Regardless
of g!



Example: Tension in a String

A mass of Skg hangs from a string a
attached via a frictionless massless I

pulley to a mass of 10kg which

W T

rests on a table. What is the -

acceleration of the mass and string Ff J=
system if the coefficient of Kinetic T
friction between the mass and m
table is 0.2? &
For Kinetic friction, the friction force becomes v ¢

Ff = MKN = U m g
The sum of the forces on body 1 along the string are:

F =FT1_Ff = b, —uemg=ma
The sum of the forces on body 2 along the string are:

F2=Fg_FT2=m2g_FT2=m”a

)

m, o pulley



Example: Tension in a String

A mass of Skg hangs from a string a
attached via a frictionless massless I f’ ulle
pulley to a mass of 10kg which L T_ = puticy
rests on a table. What is the - N C
acceleration of the mass and string Ff J=
system if the coefficient of kinetic T
friction between the mass and
. m, a
table is 0.27? B l
F
However, Fa.=r_ v ¢
Which gives m,g—ma-u,mg=m,a
And the acceleration is This is JUSt like
example 6-11 in
my = e, (5)-(0.2)(10) g
a= I ; ~g = (15) (9.8)m/s” the text, and is a
- ! standard friction
a=1.96m /S_' problem.
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