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Motion in More Than OneMotion in More Than One--DD 
Circular Motion 2Circular Motion 2 

NewtonNewton’’s Laws of Motions Laws of Motion



Circular Motion Circular Motion -- Spin Up The CDSpin Up The CD
A 12.7cm diameter CD is spinning up with the rim undergoing a
uniform tangential acceleration of                             Find the 
magnitude and direction of the acceleration for a point on the rim
when   

at  91.4cm/s2.

To find the radial acceleration we need the tangential velocity.

t . 341sec.

This means that the radial acceleration is

v  att  91.4. 341  31.2cm/s

ar  v2
r  31.22

6.35  153.2cm/s2



Spin Up The CDSpin Up The CD
A 12.7cm diameter CD is spinning up with the rim undergoing a
uniform tangential acceleration of                             Find the 
magnitude and direction of the acceleration for a point on the rim
after   

at  91.4cm/s2.

t . 341sec.

The magnitude of the acceleration is

The direction is 

Measured from the tangent to the rim of the CD. 

a  ar
2  at

2  153.22  91.42  178cm/s2

  tan−1 153.2
91.4  1.033rad  59.2∘



Spin Up The CDSpin Up The CD
Given a uniform tangential acceleration      derive the an expression
for the time t when the acceleration points at        toward the
direction of motion.   

Solving this algebraic equation for t

at

45∘

This condition requires that 

at  ar → at  v2
r  at

2t2

r

t  r/at



NonuniformNonuniform Circular MotionCircular Motion

Each point along the path can be characterized by a radius of curvature, r.  
An object with speed v has a radial acceleration of  v2/r and a tangential 
acceleration of magnitude  dv/dt . In general both v and r change as the 
object moves.

a  at

 − ar

r with at  dv
dt and ar  v2

r  2r





Question 21 extension: What if the
tangential velocity remains constant,
does the radial acceleration increase
or decrease?





p  mv







Sir Isaac Newton
• 1642 – 1727
• Formulated basic 

laws of mechanics
• Discovered Law of 

Universal Gravitation
• Invented form of 

calculus
• Many observations 

dealing with light and 
optics





Fnet ∑ Fi  0  p  const.



F 
dp
dt 

dmv 
dt

F  m dv
dt  ma



More About NewtonMore About Newton’’s Second Laws Second Law

is the net force
This is the vector sum of all the forces acting on 

the object

Newton’s Second Law can be expressed in 
terms of components:
ΣFx = m ax
ΣFy = m ay
ΣFz = m az

∑ F



NewtonNewton’’s Second Law of Motions Second Law of Motion
Food for thought

We have well defined definitions for mass and acceleration but how exactly
do we define a force?  We are very conscious of forces that we exert 
ourselves, but we somehow need to define what we mean by a force. 

The route preferred by most philosophers of science is to use Newton’s

second law,                            as the definition of a force.  The unit we 

will adopt is the newton (N), which is the magnitude of a single force that
accelerates a standard kilogram mass with an acceleration of 

F  ma ,

1 m/s2.







Example Example -- NewtonNewton’’s Second Law of Motions Second Law of Motion
A 940kg spacecraft is moving uniformly
at 4.8 km/s when it fires a rocket that 
exerts a 4.5x103 N force at 67o to the 
initial direction for 120s.

(a) How far does the craft move during 
the firing?

First we determine the acceleration and then use
the kinematic equations. The acceleration vector 
is:

a  F
m  Fcos

m

i  Fsin

m

j

The components of the acceleration are:

ax  4.5  103

940 cos 67∘  1.87m/s2 and ay  4.5  103

940 sin67∘  4.41m/s2



Example Example -- NewtonNewton’’s Second Law of Motions Second Law of Motion
A 940kg spacecraft is moving uniformly
at 4.8 km/s when it fires a rocket that 
exerts a 4.5x103 N force at 67o to the 
initial direction for 120s.

(a) How far does the craft move during 
the firing?

First we determine the acceleration and then use
the kinematic equations. The displacements are

The net distance the craft moves while the rockets fire is 

r  Δx2  Δy2  589.52  31. 752  590km

Δx  v0t  1
2 axt2  4.8  103120  1

2  1.87  1202  589.5km

Δy  0  1
2 ayt2  0  1

2  4.41  1202  31.75km



Example Example -- NewtonNewton’’s Second Law of Motions Second Law of Motion
A 940kg spacecraft is moving uniformly
at 4.8 km/s when it fires a rocket that 
exerts a 4.5x103 N force at 67o to the 
initial direction for 120s.

First we determine the acceleration and then
use the kinematic equations. The velocity 
components are

(b) What is the final velocity of the spacecraft?

The final speed and direction of the craft is

vx  v0  axt  4.8  103  1.87  120  5.024km/s
vy  0  ayt  0  4.41  120 . 529km/s

v  vx
2  vy

2  5.0242  . 5292  5.05m/s with   tan−1 . 529
5. 024  6.01∘
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