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KeplerKepler’’ss Laws of Planetary MotionLaws of Planetary Motion
Kepler’s three laws make no effort to explain the planetary motion. 
Instead, they are mathematical descriptions of the planet’s motion. 

1. The planets orbit the Sun in 
ellipses with the Sun at one focus.

Discuss Keper’s breakthrough with 
Brahe’s data.  

2. A line joining the Sun and a 
planet sweeps out equal areas in 
equal times.   

This is a straightforward result of the 
conservation of angular momentum. 



KeplerKepler’’ss Laws of Planetary MotionLaws of Planetary Motion
3. The square of the planet’s 
orbital period is proportional to 
the cube of the semimajor axis of 
its orbit.
In units of Earth years and 
Astronomical Units, the average 
distance from the Earth to the Sun, 
this law is expressed as  T2 = a3. 

This final observation occurred several years after the first two. 
It was Newton’s prediction of these observations using his law of gravity 
that resulted in a basic understanding of orbital motion and (weak) gravity in 
general. In fact Kepler’s third law (in SI units) is a straightforward extension 
of our knowledge of the angular velocity of an orbiting object. 
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NewtonNewton’’s Law of Gravitys Law of Gravity

Newton realized that the motion of the falling apple and the motion of 
the moon around the Earth were due to the same force. They were both 
falling toward the Earth due to the force of gravity. 

Fg  − GMm
r2 Universal Gravitation

This force obeys the inverse square law. Also the minus sign 
indicates that this force is attractive.

G is the universal constant of gravitational attraction and is given by 
G = 6.673x10-11Nm2/kg2

Strictly speaking it only applies to point objects. However, for 
spherically symmetrical objects r is the distance between their 
centers. As long as the size of the object is small compared to r, 
then it is simply the distance between them. 



Orbital Motion Orbital Motion 
An object orbiting the Earth (or any other 
object orbiting a large massive object) is 
accelerating toward the center of the Earth. 
The blue lines indicate the path of an object 
in the absence of gravity. From our study of 
circular motion we know that gravity must 
provide the force for radial acceleration. 
This leads to the period for a circular orbit: 

GMm
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r  m2r → 2  GM
r3

42
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r3 → T2  42
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We have proved Kepler’s 3rd law for circular orbits. Note that this expression is 
independent of the object’s mass. This law is the primary way astronomers 
measure the product GM of objects throughout our galaxy. 



Cavendish Experiment Cavendish Experiment 
Astronomers measure the product GM for orbiting 
objects, but what about G itself? It is extremely 
weak but Cavendish found a way. He suspended 
two 5cm diameter lead spheres connected by a 
thin rod on the end of a thin fiber. He then brought 
two 30cm lead spheres close to the suspended lead 
spheres and measured the small rotation of the 
rod. Knowing the torsional property, k, of the 
fiber, he was able to calculate G. 

Actually Cavendish’s purpose was to measure the mass of the Earth. Knowing 
the gravitational acceleration at the surface of the Earth as well as the rotational 
period of the moon, he knew the product GM. His final result for G in SI units 
was                                         G = 6.74x10-11Nm2/kg2.

It is the product GM that determines the dynamical properties of objects in a 
gravitational field. Astronomers routinely measure this product to 5 parts in 108 

while G itself is only known to 5 parts in 104. 



Example: Geosynchronous Orbit Example: Geosynchronous Orbit 
Geosynchronous orbits are important for 
communications satellites. For example,  
Direct Dish TV. We are now in a position to 
determine the altitude for a geosynchronous 
orbit. The period must be one day! From 
Kepler’s 3rd law:

However this quantity is the distance from the center of the Earth, not its 
altitude. The altitude is            r – RE = 3.59 x107m.

r3  GMET2

42  7.538  1022m3

r  4.224  107m



Orbital Motion Orbital Motion 
From our study of circular motion we know 
that gravity must provide the force for 
radial acceleration. This leads to the orbital 
velocity for a circular orbit:

Since the orbital velocity is independent of the object’s mass, all objects in orbit 
are traveling at the same speed. For example, an astronaut on a space walk is 
not left behind by the space shuttle.                           
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Gravitational Potential EnergyGravitational Potential Energy

So the potential energy increases as an object’s distance from the 
Earth (or any massive object) is increased. By convention the 
potential energy is defined to be zero when the object is infinity far 
from the gravitational source. Hence setting r1 to infinity we find

The change in gravitational 
potential that occurs when 
moving an object of mass m 
from r1 to r2 is:

ΔU  −
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r2
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Gravitational Potential EnergyGravitational Potential Energy

Is this definition for gravitational potential energy consistent with mgh?

Ur  − GMm
r

ΔU  GMm 1
r1
− 1

r2
 GMm 1

RE
− 1

RE  h

ΔU  GMm RE  h − RE
RERE  h

≃ GMm h
RE

2  m GM
RE

2 h

ΔU  mgh!

As long as the change in elevation, h, is small compared to the radius of the 
Earth, then the expression we have used (assumed that g is constant) is fine!



Gravitational Potential EnergyGravitational Potential Energy

Ur  − GMm
r

We mentioned that strictly speaking 
Newton’s law of gravity only applies to 
point particles. With this in mind consider a 
thin shell of uniform mass density. 

Consider the gravitational potential energy for a particle of mass m located at 
the point P due to a ring on the shell of radius a. The potential energy at P:

dU  − Gm
r dM  − Gm

r
M
A dA  − GmM

4a2
1
r 2a sinad

dU  − GmM
2
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d

All that remains is to determine r(q) and perform the integration.



Gravitational Potential EnergyGravitational Potential Energy
From the Pythagorean theorem we know:

r2  R − x2  y2

r2  R − acos2  a2 sin2

r2  R2  a2 − 2aRcos

Performing the integral:

Outside the shell the gravitational potential is the same as though all the mass 
were concentrated at the center of the shell. Inside the shell the potential is 
constant and independent of the location inside the shell. Taking the derivative 
we would find that there is zero force on an object inside the shell.

U  − GmM
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d  −GMm
1/R R  a
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Gravitational Potential Inside a Uniform SphereGravitational Potential Inside a Uniform Sphere

The total mass inside a uniform density sphere of 
radius r is:

From Newton’s law of gravity the force on a particle 
of mass m is:

mr   4
3 r3  M r3

RE
3

Fg  − GmMr3

r2RE
2  − GmM

RE
3 r

So the force due to gravity increases linearly from zero at the center (although 
the pressure is maximum there) to the usual 1/RE

2 at the surface of the Earth. 
For r > RE the gravitational field behaves via the inverse square law. 



Simple Harmonic Oscillations Due to GravitySimple Harmonic Oscillations Due to Gravity
Consider a tunnel through the Earth. Then 
measure q

 
from the point P, the point of closest 

approach. When an object is located a distance 
x from P the force parallel to the tunnel is:

F  − GMm
RE

3 r cos  − GMm
RE

3 x

This is a linear restoring force! The 
angular frequency and period are:

2  GME
RE

3 and T  2RE RE/GME  5147.0sec  85.8min

This is the roundtrip time. One way from any location on Earth to any other is 
T = 43min.  Starting from rest, what is the maximum velocity at the center?

vmax  RE  GME/RE  7.79km/ sec



Gravitational EnergyGravitational Energy

The total energy for an object
in a gravitational field is:

For a circular orbit there is only a tangential velocity and it is gravity that 
provides the radial acceleration: 

E  1
2 mv2 − GMm

r

m v2
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r2 → 1
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2
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The total energy is then:
E  1

2
GMm

r − GMm
r

E  − 1
2

GMm
r  1

2 U  −K

Higher kinetic energy corresponds to a lower total energy! To get into a faster 
circular orbit a spacecraft must lose energy! To get into a slower circular orbit a 
spacecraft must gain energy! 



Change Circular OrbitsChange Circular Orbits

To change circular orbit from 1 to 3 a 
spacecraft fires its rockets at P. This 
changes the circular orbit to an elliptical 
orbit, orbit 2. When the spacecraft 
reaches its apogee in the elliptical orbit, 
P’, it fires its rockets again to change 
into a larger circular orbit.   

The tangential velocity in a circular orbit is found from

K  1
2 mvt

2  1
2 |U|  1

2
GMm

r → vt  GM/r

The craft speeds up when it fires its rockets at P. Then it slows down during 
its trip to P’. When it is tangent to the outer circular orbit, the craft is traveling 
to slow to remain in a circular orbit at that r. It must fire its rockets again.





Escape VelocityEscape Velocity
To escape the gravitational field the 
spacecraft must have E > 0. It must be in 
a hyperbolic orbit, or at least a parabolic 
orbit for which E = 0. For that case:

Does the direction matter? No!

At the surface of the Earth:

E  1
2 mvesc

2 − GMm
r  0

vesc  2GM/r

vesc  2GME/RE  40km/hr



Tidal ForcesTidal Forces

The change in the gravitational acceleration between the side of the Earth 
closest to the Moon and the side farthest from the Moon results in the water 
bulging toward (and away from) the moon. This explains why there are 
approximately two tides per day. 



Tidal FrictionTidal Friction

The resulting friction 
from the flow of the 
water trying to stay on 
the Earth-Moon line 
slows the Earth’s 
rotation. 

Tidal friction in the past (when the Moon was molten) slowed the Moon to 
the point where its orbital period and it period of rotation on its axis became 
synchronized. We now only see one face (slightly bulged toward us). 



SpacetimeSpacetime CurvatureCurvature
In General Relativity the effects of massive objects are to curve space-time. 
This curvature causes light to bend, bound orbits (ellipses) to precess, and 
time to slow down.  

It was GR’s prediction of the precession of Mercury’s orbit and the bending of 
light (observed during a solar eclipse) that made Einstein famous to the general 
public. The weaker gravitational field experienced by orbiting GPS satellites 
means their rate of time is faster than for clocks on Earth. Without taking this 
into account those satellites would not know their correct position!



Black HolesBlack Holes
General Relativity also allows for the possibility of Black Holes. In this case 
the mass of a large star has collapsed to such a small volume that nothing 
can stop it from proceeding to infinite density. A horizon forms about this 
“singularity” that does not allow anything to escape even light. 

The radius of an “event horizon” from 
which inside nothing can escape is:

Rhor  2GM/c2 → RSun ≃ 3km



ThatThat’’s All Folks!s All Folks!

This completes Physics 2A. I hope you enjoyed at least 
some of it!

There will be a review session tomorrow morning that 
should be helpful in preparing for the final! Good Luck to 
Everyone!
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