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S H O S H O -- Velocity and AccelerationVelocity and Acceleration
It is useful to consider the velocity and acceleration 
as it relates to the displacement. For this we will 
use the solution that includes the phase. 

The velocity is the first derivative:

From this we see that the velocity is out of phase with the displacement. When 
the displacement is maximum, the velocity is zero. Similarly when the velocity 
is maximum the displacement is zero. 

The acceleration is the 
second derivative:

The acceleration always has the opposite sign of the displacement, i.e. the 
object is under the influence of a restoring force!

xt  Acost  

vt  dx
dt  −Asint  

at  d2x
dt2  −A2 cost  



Uniform Circular Motion and SHOUniform Circular Motion and SHO
We can think of SHO as the x 
component of an object undergoing 
circular motion with a uniform 
angular velocity w. In the figure 
q

 
= w(t) and x = A cosq. 

The tangential velocity is wA and the 
x component of this velocity is 
proportional to sinq.

 
Also from the 

figure we see that the x component of 
the velocity is pointing in negative 
direction when sinq

 
is positive. 

Hence, v = - wA sinq.

This should help you to understand why we used wt as the argument for 
the solution to the displacement of an object under a linear restoring force.



Energy in Simple Harmonic OscillationsEnergy in Simple Harmonic Oscillations
For the mass spring system the potential 
energy is U(x) = ½ k x2, where x is the 
displacement from equilibrium.

The kinetic energy is K = ½ m v2. 

Assuming that x = A cos(wt) we find:

U  1
2 kA2 cos2t

K  1
2 m2A2 sin2t

However w2 = k/m. Hence the total energy is: 

E  U  K  1
2 kA2 cos2t  1

2 kA2 sin2t  1
2 kA2

The kinetic and potential energy are out of phase so that when one is a 
minimum the other is a maximum and vice versa. Their total is a constant!



Example: Vertical Mass SpringExample: Vertical Mass Spring
There are now two forces acting on the mass m. 
The force of gravity and that due to the spring. 
The resulting differential equation from 
Newton’s 2nd is:

mg − kx  m d2x
dt2 → d2x

dt2  k
m x  g

The solution xh = Acos(wt+f) satisfies: 

Simply adding x1 = mg/k to the homogeneous solution yields the full solution: 

x  xh  x1  Acost    mg/k

The mass continues to oscillate at the same frequency as before. It simply 
oscillates about a new equilibrium position, x1 = mg/k.

d2xh
dt2  k

m xh  0, 2  k/m



Example: Spring and Rotating DiskExample: Spring and Rotating Disk

A uniform disk of mass M and radius R is 
mounted on a horizontal axle. A horizontal 
spring of spring constant k at equilibrium is 
connected to the disk at a distance R/2 
above the axle. What is the angular 
frequency for small amplitude oscillations? 

If the disk is rotated through an angle q, the 
torque and angular acceleration are related:

The moment of inertia is 
I = ½ MR2. Hence the EOM 
for small oscillations is:

Hence the angular frequency is found from:

  −kx Rcos
2  −k Rcos

2
Rsin

2  I

d2
dt2  k

2M   0
2  k/2M



Oscillatory Motion and Oscillatory Motion and 
Potential Energy FunctionsPotential Energy Functions

For small displacements from a position of 
stable equilibrium, xo , the potential can 
usually be approximated by an upright 
parabola.  Consider a Taylor series about xo : 

Ux ≃ Uxo  
dUxo 

dx x − xo   1
2

d2Uxo 
dx2 x − xo 2

At the minimum the first derivative of the potential vanishes. Any potential 
energy has an arbitrary constant as it is the change in potential energy that is 
important. As long as the displacement from equilibrium is small we have:

ΔUx ≃ 1
2

d2Uxo 
dx2 x − xo 2 and F  − dU

dx  − d2Uxo 
dx2 x − xo 



Oscillatory Motion and Oscillatory Motion and 
Potential Energy FunctionsPotential Energy Functions

For small displacements from a position of 
stable equilibrium, xo , the potential can 
usually be approximated by an upright 
parabola.  

F  − dU
dx  − d2Uxo 

dx2 x − xo   −kx − xo  with k  d2Uxo 
dx2

This is Hook’s law all over again with an effective spring constant being 
given by the second derivative of the potential at the point of equilibrium. 
So SHO is a very general phenomena. As it turns out it is also very general 
phenomena even in quantum mechanics. Only when the second derivative 
vanishes or when the displacements from equilibrium are large is this not a 
good approximation! 



Effective Gravitational Potential Effective Gravitational Potential 
and Oscillatory Motionand Oscillatory Motion

The effective gravitational potential for an 
planet or comet orbiting a star (or moon 
orbiting a planet) is a sum of (i) a term 
due to the centrifugal force term and (ii) a 
term due to the gravitational potential 
itself.  

A plot of this effective potential is 
shown in the figure. L is the angular 
momentum of the orbiting object.

Ueffr  − GMm
r  1

2
L2

mr2

A object in a circular orbit has a fixed radius. This radius occurs at the 
minimum in the potential. Since its radius will not change at this point, the 
object has no kinetic energy related to a changing distance from the star, 
dr/dt. How about orbits that are slightly displaced from this radius?



Effective Gravitational Potential Effective Gravitational Potential 
and Oscillatory Motionand Oscillatory Motion

The effective gravitational potential for an 
orbiting object is:  

Ueffr  − GMm
r  1

2
L2

mr2

First we have to determine ro .   

Here       is the angular velocity of the 
orbiting object. The effective spring 
constant is:



d2Uro 
dr2  −2 GMm

ro
3  3 L2

mro
4  m2  k → 2  k/m  2

If the angular velocity equals the angular oscillating frequency, closed orbits!closed orbits!

dUro 
dr  GMm

ro
2 − L2

mro
3  0

GMm
ro

2  m2ro
42

mro
3 → ro

3  GM
2
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KeplerKepler’’ss Laws of Planetary MotionLaws of Planetary Motion
Kepler’s three laws make no effort to explain the planetary motion. 
Instead, they are mathematical descriptions of the planet’s motion. 

1. The planets orbit the Sun in 
ellipses with the Sun at one focus.

Discuss Keper’s breakthrough with 
Brahe’s data.  “Those 8 arcminutes of 
Mars orbit could not be ignored.”

2. A line joining the Sun and a 
planet sweeps out equal areas in 
equal times.   

This is a straightforward result of the 
conservation of angular momentum. 



KeplerKepler’’ss Laws of Planetary MotionLaws of Planetary Motion
3. The square of the planet’s 
orbital period is proportional to 
the cube of the semimajor axis of 
its orbit.
In units of Earth years and 
Astronomical Units, the average 
distance from the Earth to the Sun, 
this law is expressed as  T2 = a3. 

This final observation occurred several years after the first two. 
It was Newton’s prediction of these observations using his law of gravity 
that resulted in a basic understanding of orbital motion and (weak) gravity in 
general. In fact Kepler’s third law (in SI units) is a straightforward extension 
of our knowledge of the angular velocity of an orbiting object. 

2  42

T2  GM
ro

3 → T2  42

GM ro
3



NewtonNewton’’s Law of Gravitys Law of Gravity

Newton realized that the motion of the falling apple and the motion of 
the moon around the Earth were due to the same force. They were both 
falling toward the Earth due to the force of gravity. 

Fg  − GMm
r2 Universal Gravitation

This force obeys the inverse square law. Also the minus sign 
indicates that this force is attractive.

G is the universal constant of gravitational attraction and is given by 
G = 6.673x10-11Nm2/kg2

Strictly speaking it only applies to point objects. However, for 
spherically symmetrical objects r is the distance between their 
centers. As long as the size of the object is small compared to r, 
then it is simply the distance between them. 



Acceleration Due to Gravity on the EarthAcceleration Due to Gravity on the Earth
The force of gravity everyone feels on the surface of the Earth is given 
by Newton’s law where r = RE .  Given that the mass of the Earth is ME = 
5.974x1024kg and the radius of the Earth is RE = 6.378x106m the force 
divided its mass of an object on the surface of the Earth is:

The first thing to note is that this acceleration due to the pull of 
gravity from the Earth is INDEPENDENT of the mass of the object. 
Next, it is not appropriate to use 5 significant figures in the result as 
we only used 4 significant figures in all of the quantities used to find 
this acceleration. Rounding off this result we find g = 9.800m/s2.

F/m  − 6.673  10−11  5.974  1024

6.378  1062  −9.7998m/ sec2



Gravity is Weak! Gravity is Weak! 
When calculating the electron energy levels in the hydrogen atom, 
the gravitational attraction between the proton and the electron is 
neglected. It is of interest to compare the difference between the 
electrical force and the gravitational force at the same separation. 
The force between two static charges is:

This law also satisfies an inverse square law. Hence the ratio of the electrical 
attraction and the gravitational attraction will be independent of the distance 
between the two particles. Using the masses of the proton and electron, the 
electron charge, and the Coulomb interaction constant we find:

FC 
q1q2

4or2 → Coulomb′s Law

Fg/FC 
Gmpme

qpqe/4o 
 4.4  10−40!

Gravity may be MUCH weaker than the electrical force, but it is the dominant 
long range force in the universe. It is ALWAYS attractive while electrical 
charges appear to occur in equal numbers, hence they balance each other out 
over long ranges.



Orbital Motion Orbital Motion 
An object orbiting the Earth (or any other 
object orbiting a large massive object) is 
accelerating toward the center of the Earth. 
The blue lines indicate the path of an object 
in the absence of gravity. From our study of 
circular motion we know that gravity must 
provide the force for radial acceleration. 
This leads to the period for a circular orbit: 

GMm
r2  mv2

r  m2r → 2  GM
r3

42

T2  GM
r3 → T2  42

GM r3

We have proved Kepler’s 3rd law for circular orbits. Note that this expression is 
independent of the object’s mass. This law is the primary way astronomers 
measure the product GM of objects throughout our galaxy. 



Cavendish Experiment Cavendish Experiment 
Astronomers measure the product GM for orbiting 
objects, but what about G itself? It is extremely 
weak but Cavendish found a way. He suspended 
two 5cm diameter lead spheres connected by a 
thin rod on the end of a thin fiber. He then brought 
two 30cm lead spheres close to the suspended lead 
spheres and measured the small rotation of the 
rod. Knowing the torsional property, k, of the 
fiber, he was able to calculate G. 

Actually Cavendish’s purpose was to measure the mass of the Earth. Knowing 
the gravitational acceleration at the surface of the Earth as well as the rotational 
period of the moon, he knew the product GM. His final result for G in SI units 
was                                         G = 6.74x10-11Nm2/kg2.

It is the product GM that determines the dynamical properties of objects in a 
gravitational field. Astronomers routinely measure this product to 5 parts in 108 

while G itself is only known to 5 parts in 104. 



Example: Geosynchronous Orbit Example: Geosynchronous Orbit 
Geosynchronous orbits are important for 
communications satellites. For example,  
Direct Dish TV. We are now in a position to 
determine the altitude for a geosynchronous 
orbit. The period must be one day! From 
Kepler’s 3rd law:

However this quantity is the distance from the center of the Earth, not its 
altitude. The altitude is            r – RE = 3.59 x107m.

r3  GMET2

42  7.538  1022m3

r  4.224  107m



Orbital Motion Orbital Motion 
From our study of circular motion we know 
that gravity must provide the force for 
radial acceleration. This leads to the orbital 
velocity for a circular orbit:

Since the orbital velocity is independent of the object’s mass, all objects in orbit 
are traveling at the same speed. For example, an astronaut on a space walk is 
not left behind by the space shuttle.                           

GMm
r2 

mvorb
2

r → vorb
2  GM

r
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