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Example: Slipping SphereExample: Slipping Sphere
A uniform sphere is supported by a rope. The point 
where the rope is attached to the sphere is located 
so a continuation of the rope would intersect a 
horizontal line through the sphere’s center a 
distance R/2 beyond the center, as shown. What is 
the smallest value for ms between the wall and the 
sphere?

Taking torques about the contact between the sphere 
and the wall, assuming a mass m, yields: 

3
2 RTcos 30∘  mgR

Summing forces in both the x and y directions:

N  T sin30∘ and sN  Tcos 30∘  mg



Example: Slipping SphereExample: Slipping Sphere
A uniform sphere is supported by a rope. The point 
where the rope is attached to the sphere is located 
so a continuation of the rope would intersect a 
horizontal line through the sphere’s center a 
distance R/2 beyond the center, as shown. What is 
the smallest value for ms between the wall and the 
sphere?

There are three unknowns, ms , T, and N. Substituting 
into the force equation in the y direction T from the 
torque equation and N from the x force equation:

mg  s sin30∘  cos 30∘ 2mg
3cos 30∘

3
2  s tan30∘  1 → s  cos 30∘

2sin30∘

s  cos 30∘  3 /2 . 866



Example: Double Welled PotentialExample: Double Welled Potential
Consider the potential given by

Ux  − ax2

2  bx4

4
Find the equilibrium points and determine 
if they are stable.  

The equilibrium points are found from:

dU
dx  −ax  bx3  0 → x  0, a/b

Stability is determined by the second derivative of the potential at equilibrium.

d2U
dx2 0

 −a  3bx2|0  −a  0 unstable

d2U
dx2

 a/b
 −a  3bx2| a/b  −a  3a  2a  0 stable



Simple Harmonic MotionSimple Harmonic Motion

Mathematically such a force is described as:

The is the force exerted by an ideal spring of spring constant k. 
From Newton’s 2nd we can write:

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. 

F  −kx

F  m d2x
dt2  −kx

An object experiencing such a force means that when it is displaced from 
equilibrium there is a force proportional to the distance from equilibrium that 
accelerates the object back towards its equilibrium position. 

How do we describe such motion?



Simple Harmonic MotionSimple Harmonic Motion

From Newton’s 2nd:

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. 

F  m d2x
dt2  −kx

The solution to this equation is of the form x = A cos(wt) + B sin(wt). To see 
this we simply substitute this function into the “differential equation” 
represented by Newton’s 2nd. Taking the derivatives: 

dx
dt  −Asint  Bcost

d2x
dt2  −2Acost − 2Bsint

d2x
dt2  −2x



Simple Harmonic MotionSimple Harmonic Motion

Substituting this result into Newton’s 2nd:

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. 

This equation is satisfied if w2 = k/m ! But what is this w
 

? We know from 
the form of x that when wT = 2p

 
the sine or cosine function returns to its 

value it had when t = 0. So T is the period of the sine or cosine function. 
Hence w

 
= 2p

 
/T = 2pf, where f is the frequency of oscillation. 

F  m d2x
dt2  −m2x  −kx

Just as with angular velocity, w
 

is measured in radians per second. When 
wT = 2p

 
radians the trignometric functions repeat. The motion is 

oscillatory with frequency f = w/2p
 

where   k/m .



Simple Harmonic MotionSimple Harmonic Motion

Simple harmonic motion results when an 
object is subject to a linear restoring force and 
is called simple harmonic motion, SHO. The 
general solution is then: 

x  Acost  Bsint with   k/m

What about the unknown constants A and B? They are determined by the 
initial conditions. For example if at t = 0 the system satisfies x = xo and v = 0, 
then: 

xt  0  A  xo and v  dx/dt  B  0

The solution for this initial condition becomes: xt  xo cost



Simple Harmonic MotionSimple Harmonic Motion
Simple harmonic motion results when an object is subject to a linear 
restoring force and is called simple harmonic motion, SHO. An equivalent 
solution is given by: 

Expanding the cosine function:

x  Ccost  

x  Ccos cost − Csin sint

This is an equivalent solution with: A  Ccos and B  −Csin

Either form of the solution can be used. 
Convenience is what determines the 
choice. The figure shows three different 
phases (a) f

 
= 0 , (b) f

 
= -p/4, 

(c) f
 

= -p/2.



S H O S H O -- Velocity and AccelerationVelocity and Acceleration
It is useful to consider the velocity and acceleration 
as it relates to the displacement. For this we will 
use the solution that includes the phase. 

The velocity is the first derivative:

From this we see that the velocity is out of phase with the displacement. When 
the displacement is maximum, the velocity is zero. Similarly when the velocity 
is maximum the displacement is zero. 

The acceleration is the 
second derivative:

The acceleration always has the opposite of the displacement, i.e. the object is 
under the influence of a restoring force!

xt  Acost  

vt  dx
dt  −Asint  

at  d2x
dt2  −A2 cost  



Uniform Circular Motion and SHOUniform Circular Motion and SHO
We can think of SHO as the x 
component of an object undergoing 
circular motion with a uniform 
angular velocity w. In the figure 
q

 
= w(t) and x = A cosq. 

The tangential velocity is wA and the 
x component of this velocity is 
proportional to sinq.

 
Also from the 

figure we see that the x component of 
the velocity is pointing in negative 
direction when sinq

 
is positive. 

Hence, v = - wA sinq.

This should help you to understand why we used wt as the argument for 
the solution to the displacement of an object under a linear restoring force.



Energy in Simple Harmonic OscillationsEnergy in Simple Harmonic Oscillations
For the mass spring system the potential 
energy is U(x) = ½ k x2, where x is the 
displacement from equilibrium.

The kinetic energy is K = ½ m v2. 

Assuming that x = A cos(wt) we find:

U  1
2 kA2 cos2t

K  1
2 m2A2 sin2t

However w2 = k/m. Hence the total energy is: 

E  U  K  1
2 kA2 cos2t  1

2 kA2 sin2t  1
2 kA2

The kinetic and potential energy are out of phase so that when one is a 
minimum the other is a maximum and vice versa. Their total is a constant!



Example: Vertical Mass SpringExample: Vertical Mass Spring
There are now two forces acting on the mass m. 
The force of gravity and that due to the spring. 
The resulting differential equation from 
Newton’s 2nd is:

mg − kx  m d2x
dt2 → d2x

dt2  k
m x  g

The solution xh = Acos(wt+f) satisfies: 

Simply adding x1 = mg/k to the homogeneous solution yields the full solution: 

x  xh  x1  Acost    mg/k

The mass continues to oscillate at the same frequency as before. It simply 
oscillates about a new equilibrium position, x1 = mg/k.

d2xh
dt2  k

m xh  0, 2  k/m



Example: Example: TorsionalTorsional OscillatorOscillator
For this example it is a good approximation to assume 
that the restoring torque is proportional to the angular 
displacement, t

 
= -kq. The resulting differential 

equation, an analog of Newton’s 2nd, is:

By analogy to the differential equation for a spring, the solution to this 
differential equation is: 

For this example k
 

is analogous to the spring constant while the moment of 
inertia, I, is analogous to the mass of the oscillating object. Be careful here as w

 is not the same thing as dq/dt which is obtained by taking the time derivative of 
the solution. The torsional oscillator provides an accurate way to measure I.

  I  I d2
dt2  −

t  Acost  o  where   /I .



Example: Simple PendulumExample: Simple Pendulum
Consider the pendulum as shown in the figure. 
There are two forces acting on the pendulum 
bob, the tension in the string and gravity. If we 
take torques about the pivot point where the 
string is attached to the ceiling then the tension 
makes no contribution (nor do any forces 
supporting the string). The result is: 

Simplifying this differential equation yields:

Treating the bob as a point particle and 
substituting for the moment of inertia,
ml2, we find:

  I → −ℓmg sin −   −ℓmg sin  I d2
dt2

d2
dt2 

mgℓ
I sin  0

d2
dt2 

g
ℓ sin  0



Example: Simple PendulumExample: Simple Pendulum
Consider the pendulum as shown in the figure.  

This has a somewhat different form than the 
equations describing SHO. It is in the limit of small 
q

 
when sinq

 
= q

 
that the motion is described by 

SHO. Then we find:

d2
dt2 

g
ℓ sin  0

d2
dt2 

g
ℓ   0

The solution to this differential equation is: 

t  Acost   with 2  g/ℓ

Hence the simple pendulum executes SHO only when its amplitude q
 

<<1.



Example: Physical PendulumExample: Physical Pendulum
Consider the physical pendulum as shown in the 
figure.  The center of gravity is a distance l from 
the pivot point. The equation of motion obtained 
from finding the torques about the pivot point is:

This is the same as we obtained earlier, only now 
the momentum of inertia does not necessarily 
have a simple form. In the limit q

 
<<1 the solution 

is: 

d2
dt2 

mgℓ
I sin  0

t  Acost   with 2  mgℓ/I



Example: Physical Pendulum Example: Physical Pendulum -- HoopHoop
Consider a hoop of mass m and radius R. It is 
oscillating about a thin horizontal rod as shown. 
Find its period of oscillations. 

The moment of inertia of a hoop about an axis 
through its center is Icm = m R2.  From the parallel 
axis theorem if it is rotating about an axis on its 
circumference, I = Icm + mR2 = 2mR2 . 

The angular frequency for small amplitude oscillations is:

  mgℓ/I  mgR/2mR2  g/2R

The period is: T  2/  2 2R/g



Example: Physical Pendulum Example: Physical Pendulum 
Consider a pendulum with a uniform rod of length     
and mass M. The pendulum bob has a mass m. Find its 
period of oscillations. 
For this pendulum there are two torques. One due to the 
weight of the bob and the other due to the weight of the 
pendulum rod. These torques are: 

The moment of inertia for the pendulum is:

For small angular displacements the EOM is:

  −mgℓ sin −Mg ℓ
2 sin

ℓ

I  mℓ2  1
3 Mℓ2

I d2
dt2   → mℓ2  1

3 Mℓ2 d2
dt2  − mgℓ  Mg ℓ

2 



Example: Physical Pendulum Example: Physical Pendulum 
Consider a pendulum with a uniform rod of length     and 
mass M. The pendulum bob has a mass m. Find its period 
of oscillations. 

For small angular displacements the EOM is:

ℓ

Note that the torque is the result of the gravitational force acting at the CM 
which is the CG for a uniform gravitational field. The angular frequency is:

mℓ2  1
3 Mℓ2 d2

dt2  − mgℓ  Mg ℓ
2 

2  mgℓ  Mgℓ/2
mℓ2  Mℓ2/3

 m  M/2
m  M/3

g
ℓ

The angular frequency is increased compared to a massless rod.  Note that if we 
let the bob mass go to zero, m = 0, we have the frequency for a swinging rod.  



Example: Rolling DiskExample: Rolling Disk
A uniform cylinder of mass M and radius R is 
mounted on axle through its center. The axle is 
attached to a spring of spring constant k and the 
cylinder rolls back and forth without slipping. 
Write down the conservation of energy and 
deduce the frequency of the motion. 

The kinetic energy is: T  1
2 I




2
 1

2 M x2

For the no slip condition for a
solid cylinder this expression becomes: T  1

2
3
2 M x2

The total energy for this system is: E  T  U  1
2

3
2 M x2

 1
2 kx2

By analogy with the mass-spring system the frequency is w2 = 2k/3M.
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