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3D Angular Momentum: Precession3D Angular Momentum: Precession

What is the rate of precession for the gyro?
First we determine the torques and the angular 
momentum, then apply t

 
= dL/dt. Consider the 

figure below:

Assume that the rotational 
axis is massless. Then the 
torque due to gravity is:

  D  mg →   mgDsin

A small change in the angular momentum, dL, is: dL  Lsind



3D Angular Momentum: Precession3D Angular Momentum: Precession

What is the rate of precession for the gyro?
First we determine the torques and the angular 
momentum, then apply t

 
= dL/dt. 

Solving for the precession rate, W = df/dt :

dL  dt  mgDsindt  Lsind

The precession rate is independent of q! 

  d
dt 

mgD
L



Example: PrecessionExample: Precession
Initially a gyroscope is spinning with angular 
speed w

 
and is perfectly balanced so that it is 

not precessing. When a mass m is hung from 
the frame the gyro precesses about the 
vertical axis at a rate W. Find the rotational 
inertia of the gyro.

The torque due to gravity is: 

The torque is the rate of change of the angular momentum. Hence:

Solving for I:  

  mgR

  mgR  dL
dt  L  I

I  mgR




Example: Rolling with FrictionExample: Rolling with Friction
A solid sphere of mass M and radius R is 
spinning with angular velocity wo about a 
horizontal axis. It is dropped vertically 
onto a surface with a coefficient of 
kinetic friction mk . (a) Find the 
expression for the final angular velocity 
once its achieved pure rolling motion.

There are two things happening in this scenario. First the sphere is accelerating 
in the x direction. It is the frictional force inducing this linear acceleration:

The frictional force (via torque) is also responsible for slowing the angular rate: 

Ff  kMg  Ma → a  kg → v  kgt

  kMgR  I →   kMgR/2MR2/5  5kg/2R
  o − t  o − 5kgt/2R



Example: Rolling with FrictionExample: Rolling with Friction
A solid sphere of mass M and radius R is 
spinning with angular velocity wo about a 
horizontal axis. It is dropped vertically 
onto a surface with a coefficient of 
kinetic friction mk . (b) Find the time this 
takes.

(a) The no slip condition means that v = Rw. Substituting for t now yields:

(b) Since v = mk gt = wR:

  o − 5kgt/2R  o − 5v/2R  o − 5/2
7/2  o →   2o/7

t  R/kg  2oR/7kg
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Conditions for EquilibriumConditions for Equilibrium
A body is in static equilibrium when it is stationary and when both

“the net external force and the net external torque are zero!”

∑
i

F i  0 and ∑
i

 i  0

If the tension in the support cable does not act at the center of “gravity” for
the beam and the worker then the beam will rotate!  Not good!

For static equilibrium we also have ∑
i

p i  0



 net  Rcm  Mg





Example: Static EquilibriumExample: Static Equilibrium

A canoe is tied to the shore with two ropes 
one at the bow and the other at the stern. 
As a rower boards the canoe he exerts a 
force of 200N on the canoe (as shown). 
Find the tensions in the ropes.

Since the sum of the forces is zero we have: Tb  Ts  200

To find Tb we will take the origin to be the bow of the boat. Summing the 
torques:

5Ts  2004 → Ts  160N

Since the tensions sum to 200N the tension in the bow rope is Tb = 40N



Example: Static EquilibriumExample: Static Equilibrium

A canoe is tied to the shore with two ropes 
one at the bow and the other at the stern. 
As a rower boards the canoe he exerts a 
force of 200N on the canoe (as shown). 
Find the tensions in the ropes.

What if we decided to take the origin as the stern? Then the sum of the 
torques is: 

Since the tensions sum to 200N the tension in the stern rope is Ts = 160N

5Tb  200 → Tb  40N

The answers are the same as they had to be. The important point here is 
the choice of the origin is arbitrary and is often chosen for convenience.



Example: Static EquilibriumExample: Static Equilibrium
Two pulleys are mounted on a horizontal axis 
as shown. The inner pulley has a diameter of 
6cm and the outer pulley a diameter of 20cm. 
Find the force on the outer rope required to 
support the 40kg mass.  

The forces are balanced by normal forces 
between the axel and the pulleys. 

Balancing torques yields:

Since both ropes are always tangent to the outer rim of their respective 
pulleys, sinq

 
= 1. The angle that the hand is pulling the rope determines 

the normal forces of the axel on the pulleys for the forces to sum to zero.

FR  mgr → 10F  409.83
F  129.8  118N



Example: Leaning Board Against a WallExample: Leaning Board Against a Wall
A board of mass m and length L is leaning 
against a wall. The wall is frictionless and 
the coefficient of static friction between the 
floor and the board is m. Find the minimum 
angle f

 
at which the board can be leaned 

without slipping.

The component force equations yield:

F1  mg and F1  F2

The most convenient origin for the torque equation is the bottom of the board. 
Balancing torques about that point: 

mg L
2 sin/2 −   F2Lsin  mgLsin

2  sin/2 − /2 sin  cot

Solving for f: tan  1/2 →   tan−11/2 Does this make sense?



Example: Ladder with Person Example: Ladder with Person 
This is the same problem as the board 
leaning up against the wall, except now 
we will consider the additional effects of a 
person on a ladder. The person has a mass 
mp and is a distance lp up the ladder. 

The component force equations yield:

F1  mg  mpg and F1  F2

Again the most convenient origin for the torque equation is the bottom of the 
ladder. Balancing torques at that point: 

mg L
2 cos  mpglp cos  F2L sin  mg  mpgL sin

mLcos  2mplp cos  2m  mp L sin
tan  mL  2mplp /2m  mp L

Does this answer 
make sense? 
What if m = 0?
What if lp = L?



Example: Balancing a Board Over The EdgeExample: Balancing a Board Over The Edge

A uniform board of length    is balanced over a 
frictionless edge as shown secured by a 
horizontal rope. The center of mass is a 
distance d from the edge. Find the angle, q, that 
the board makes with the horizontal. 

ℓ

Again we have to balance the forces and torques. The torque equation is 
straightforward. Using the point of contact between the board and the edge:

Tℓ/2 − d sin  mgd sin/2    mgdcos

To solve for T we have to balance forces. At the contact point there is only a 
normal force, N, (frictionless). Since this force is normal to the board balancing 
forces for both components yields: 

mg  Ncos and T  Nsin



Example: Balancing a Board Over The EdgeExample: Balancing a Board Over The Edge

A uniform board of length    is balanced over a 
frictionless edge as shown secured by a 
horizontal rope. The center of mass is a 
distance d from the edge. Find the angle, q, that 
the board makes with the horizontal. 

ℓ

There are three unknowns, q, T, and N. 
However we have three equations. Solving 
for T from the force equations:

Substituting this result into the torque 
equation yields: 

T  mg sin
cos

Tℓ/2 − d sin  mgdcos
mgℓ/2 − d sin2  mgdcos2  mgd1 − sin2

ℓ/2 sin2  d → sin  2d/ℓ

If this condition is not 
satisfied then the rope 
won’t stay horizontal!





Example: Equilibrium ConditionsExample: Equilibrium Conditions

The potential energy as a function of x is:

Ux  Uo
x3

xo
3  a x2

xo
2  4 x

xo

For what values of a will there be two 
static equilibria? Comment on the 
stability of these equilibria. 

Equilibrium is determined by dU/dx = 0.
Taking the derivative of U:

For two real roots a2 > 12, a ~ 3.5. Taking the second derivative yields:

dU
dx  Uo

xo
3 x2

xo
2  2a x

xo
 4  0 → x1,2

xo
 1

3 −a  a2 − 12

d2Ux1,2
dx2  Uo

xo
2 6 x1,2

xo
 2a  2 Uo

xo
2 a2 − 12 Right point is Right point is metastablemetastable. . 

Left point is unstable.Left point is unstable.
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