
Lecture 7

Derivation of the dispersion relation for electron plasma waves (Langmuir waves)

from fluid equations

We neglect collisions in this problem. Equations of two fluid hydrodynamics have the

form (see Lecture 6
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Here E is the wave electric field.

We found before that electron plasma waves are so called longitudinal waves, since the

wave electric field is parallel to the direction in which the charge separation takes place.

This is just direction of the wave propagation. The wave magnetic field in such wavesis

equal zero, so these waves are electrostatic waves. For such waves E = -Vcp , cp is the

wave electric potential. Electric field E is determined selfconsistently by equation

V-E = ̂ 4jtqana (3)
a

Very important simplification: We consider here only small amplitude (linear)

oscillations (waves). The main procedure in this case is linearization of equations (1), (2).

We assume that without oscillations plasma is stationary, homogeneous and has no

average drift velocity ua = 0. If a wave with electric field E propagates in plasma, it

creates perturbations of plasma parameters

(4)

Then
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Linearization means that in equations (1), (2) we will omit all terms nonlinear in wave

amplitude. We are looking for solution in the form of a plane wave:

8na,6ua,E ~ exp(ikr - icot)

As a result, we obtain from Equations (l)-(3) the following system of linear equations:

-icodna + ik • dua = 0 (!')

- icoman0dua = eanQE - yakBTaik • dna (2')

ik • E = -4jie(dne - dnt) (3')

From Equation (!'):

«0

By multiplying (2') by k -and substituting (6), we obtain

<H* 1 + 7a ^ 7\=-^\kE (7)
ma co1) maco2

From (3') and (7) we obtain
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Condition when k • E * 0, i.e. the wave electric field of electrostatic wave is not equal

zero has the form

a co -yak kBTa/ma

This is dispersion relation of electron plasma waves.

Electron plasma waves occur in phase velocity range

CO ~
->3vTe»vTi (10)

necessary to avoid strong Landau damping.

From (9) we have

co2
i (11)



Comments:

1. The last term in (11) is very small and can be neglected. That means that ions

contribute negligible amount because they can't respond effectively at high

frequency (CO = Wpe)-

2. Dispersiion relation (11) can be written in form of equation for mass attached to

an ideal spring 8x = —(K/m)6x where 6x is displacement of the mass.

2
2a CO e represents an electric contribution to spring constant

? 92b. yak vTe represents electron pressure contribution to spring constant

Determination of ye

Since CO » kvTe, the compression is adiabatic

ddT

dt
»vTe

ddT
dx

andy = (/

Since there is no collisions to produce equipartition between the three velocity

components, / = 1 => 7 = 3 .

As a result,

(12)

Dispersion relation for ion-sound (ion-acoustic) waves

As in any continuous media, the forces of gas kinetic pressure play role of elastic force

for ion-sound oscillations (waves) in plasma. We can estimate the velocity of ion-sound

waves by generalizing the expression for sound speed in gas and applying it to two-

component plasma:

2 dP d(P£+Pi)
cs =

dp dp

For adiabatic derivative



mi

Anomalous peculiarity of plasma appear for small wave length. Sound waves in gas exist

when their wavelength is much larger than mean free path. Usual sound damps very

strongly when A approaches lm /• „ and doesn't exist when A « lm r .

However, ion-sound waves can exist in collisionless plasma as well. In plasma, particles

interact through selfconsistent fields. We have seen that such an electric field leads to

high frequency Langmuir oscillations of electrons. Similarly, there is a possibility of

existence of electrostatic sound-type oscillations in which ions participate as well, if the

oscillation frequency is sufficiently small. Thus, the elastic coupling between electrons

and ions is achieved due to selfconsistent electric field.

We will assume that ion-sound waves occur in phase velocity range

3 vTi ^~;-«vTe^>Te>>Ti ( 1 4)k

The first condition is necessary to avoid strong Landau damping on ions. The second

condition is necessary to avoid Landau damping on electrons. The last relationship

between electron and ion temperatures means that ion-sound waves can propagate only in

so called non-isothermal plasma.

Condition 0) « kvTe in (14) means that perturbation created by the wave is quasi-static

for electrons and they are described by Boltzman distribution

ne=n0Qxp(ecp/kBT) (15)

</9 is the wave electric potential, E = -V(/9 .

Equations for ions

-~ + div(niui) = Q (16)
at

(
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— + (Mf • V) k = -en^cp - VPt (17)

Once more we will use here the linearization procedure that means



6n«nQ; ecp « kBTe,me — ; du« — ; £«A~- (18)
k k k

Here £f is the ion displacement.

As a result, we have from Equations (15)-(17):

„ ecp
6n =

kBT

mi ' = -eVcp - Yf B ' Vdrij (19)
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We will neglect the last term in the second equation in (19) assuming that CD/k » vTi.

For dn,dUf,cp ~ Qxp(ikr - icot) we have from (19)

e- & ToUj = kcp

k • duf enn , 2A»7 — n L — u Irrn (1(\\Urlj — flQ — K, (JJ \£")

We should use Poissoin equation for the wave potential cp to obtain dispersion relation

V2cp = -4jie(dnt -dne) (21)

Consider long wavelength oscillations kXDe « 1.

It is easy to see that the left hand side term in (20) is much smaller than each of two terms

in the right hand side. So, these oscillations can be considered as quasineutral

dne = 6nt = dn (22)

From first equation in (19) and equations (20) and (22), we obtain the dispersion relation

for long wavelength ion-sound waves:

mi
(23)



Important: Quasineutrality condition (22) doesn 't mean that I. h. side of equation (21) is

equal zero! It means that the term k (p is much smaller than each of terms in the r.h.

side of (21) 4jte6na.

Landau Damping on ions:

Condition — ^ 3vTi in (14) is equivalent to Te >107^ and ensures a weak Landau
k

damping on ions.

Landau Damping on electrons:

Ratio of the phase speed of ion-sound waves to electron thermal velocity is small

CO

kvTe \ m,-

providing a weak Landau damping on electrons, since in this case the number of resonant

electrons with velocities smaller than the wave speed and that of resonant electrons with

velocities larger than the wave phase speed are approximately equal (see Figure 1).

«1 (24)
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Dispersion relation of ion-sound waves in general case can be obtained from (9) using

condition (14).

Determinations of ye and yf in (9).

For ions CO » kvTi => \dTjdt »v^dTjdx , so compression is adiabatic

For electrons CO « kvTe => dTe/dt « vTe dTe/dx



Temperature of electrons is equali/ed very rapidly, processes of compression and

decompression are isothermal.

The dispersion relation of ion-sound waves has the following form:

1 + î-^ = o (25)
CO

or

(26)

1 +
&.

From (26) we obtain dispersion relation in two limit cases

CO = for
\co

(27)
pi

So now we know all three branches of waves that can propagate in homogeneous plasma

without magnetic field: ^

(i) high frequency electrostatic electron plasma waves

(ii) high frequency electromagnetic waves

(iii) low frequency electrostatic ion-sound waves P w

Branches of oscillations in homogeneous isotropic plasma

are shown in Figure 2.

%,£
Physical interpretation of ion-sound mode

1. kXDe » 1 => CO « CO - . Electron pressure force is so large that electron fluid

cannot be compressed. Ions oscillate independently in negative background charge (ion

plasma wave).

2. kXDe « 1 => CO » kcs. Pressure forces are smaller than charge separation

forces. Electrons and ions move together in compression of the wave
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