
Lecture 6

Hydrodynamic description of plasma
Hydrodynamical model of plasma: Plasma is mixture of electron and ion fluids.

Hydrodynamical model is applicable for plasma where

L » l(mfp),Tp » T(mjp) (1)

L,T are characteristic spatial and temporal scales of plasma processes

/,T are mean free path of plasma particles time between two collisions, correspondingly.

In kinetic approach each component of plasma is described by Vlasov equation with

collision operator
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where E and B are self-consistent fields that can be found from Maxwell's equations:
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As was shown before (see lecture 5), the distribution function for each component can in

this case be decomposed over small parameters I/L or T/T . In "zero" approximation
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where n = n(r,t),T = T(r,t),u = u(r,t) are density, temperature and average velocity.

By substituting into kinetic equation (2) / = /Q+/1+.. . , we obtain in zero

approximation
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In the r.h. side, we wrote the collision operator for total distribution function / because

(d/Q/dt) =0. We would like to note that (df/dt}co}l is not an additive function, and

therefore it cannot be written in the form

( d f / d t ) c M - ( d f 0 / d t ) c o l l + ( d f l / d t ) c o l l + . . .

In hydrodinamical model, total information about features of any component of plasma is

contained in three quantities: density, temperature, and average velocity which are

unknown functions of coordinates and time. Our goal is to derive equations for these

quantities using equation (6) or (2).

We will use more general equation (2) to obtain equations for n,u, and T which are just

zero, first, and second moments of the distribution function f(t,r,v). Let us introduce:

na(t,r)-ffa(t,r,v)dv

ua (t, r) = — f v f a (t, r, v}dv (7)
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P°(t,r)=f(vl-ui)(vJ-uJ)f
a(t,r,v}dv

that are correspondingly the density, velocity and pressure tensor of a -component of

plasma. We will use only the diagonal form of the pressure tensor: P? (t,r) = Padtj,

Pa =n T1 Haia-

We will not simplify the collision operator in Eq.(2). We will see later on, we don't need

to know the exact form of it. It is possible to use some its general features - conservation

laws. We wil not take into account the recombination and ionization processes that

change the number of charged particles.

To obtain first equation of the hydrodynamical model, let us integrate (2) over total

velocity space. Integrals of first two terms of (2) can be written in the following forms:

rdfa „ d rfa „ dna

f——dv = — C f d v =J dt dtj dt



fv^—dv = -4: [vfadv = div(naua) (8)
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In (8) we changed the order of differentiation over t and r correspondingly and

integration over v , since t, r , v are independent variables in kinetic theory. By

integrating the third term in (2) by parts, we obtain zero

1 r)fa

= 0 (9)
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In absence of ionization and recombination, the total number of particles conserves,

hence integral of collision operator is equal zero.

As a result, we obtain the continuity equation:

dna _
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By multiplying Eq. (2) by ma v and integrating over v , we obtain
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Last term in r.h. side of (11) is change the OL -component's momentum due to collisions

with another component of plasma.

If the average velocities for both plasma components are equal, there is no momentum

transfer from one component to another and \£//?;
a /dt Jo// = 0.

Since

then using the continuity equation (10), we obtain from (11) the following equation:

manal~ + (ua-V)}uf=gan<E + ̂ uaxB} + ̂ L

Here Pa = naTa is gas kinetic pressure of a -component, Fa^ is the force acting on

particles of a -component in unit volume due to collisions with another component

(friction force).



Equation (12) is the Euler equation for charged fluid. We can see that change of zero

moment n in Eq. (10) is expressed through the first moment u ; change of first moment

u in equation (12) is expressed through the second moment P . Then the change of the

pressure P (the second moment) will be expressed through the energy flux (the third

moment) and so on. To obtain the closed system of equations, we truncate the chain by

putting certain high-order moment equal to zero. Conventional approximation is to put

third moment of the distribution function equal to zero.

We will obtain the equation for the second moment of the distribution function in 1-d

case assuming that

-uJ3fadv = 0 (13)

'j
Multiplying equation (2) by ma (y - ua ) and integrating over velocity we obtain
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It ue = ui and Te =Tt, the r.h. side of (14) is equal to zero. If Te^Ti, there is the

thermal energy exchange between plasma components and r.h. side of (14) is not zero in

this case. We assume here that Te =Ti. Let us calculate second term in (14):
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As a result, we obtain from (14) equation for the temperature

dT
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Equation (15) is equation of 1-d adiabatic law (y = 3 ). It is easy to show this, if we write

the continuity equation ( 1 0) in the form

dn dn dn du
— = — + u— = -n —
dt dt dx dx

Then it follows from (15), (16)

u— =-n— (16)
dt dt dx dx



— — = -2 — = 2—— (17)
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or T~n2 and P = nT = An3;A = const.

The reason we got adiabatic law is obvious - there is no heat flux, no energy input from

collisions.

The system of equations of two-fluid hydrodynamics:
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The friction force is equal to momentum transferred from particles of one plasma

component to those of another one in unit volume per one second. In T -approximation

Fei = -Fie = -nme(ue - ut)vei (20)

Equation (15) in 3-d case has the form

dT 2
—^ + (ua • V)71 + -Tadivua = 0 (21)
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E and B in (19) are external and selfconsistent fields. Selfconsistent fields are

determined from Maxwell's equations:
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It is important to note that conventional hydrodynamic model is applicable to phenomena

with characteristic scales much larger than mean free path. There are so called

microscopic processes with characteristic scales much smaller than m.f.p, such as



oscillations in plasma, electromagnetic wave propagation, Landau damping. These

microscopic processes constitute a special part of plasma physics - collisionless plasma

physics that is described by the system of collisionless kinetic equations. Kinetic

description is often much more complicated than hydrodynamic description.

It is possible to introduce hydrodynamic model for description of collisionless plasma.

The physical reason for possibility of description of plasma by this "collisionless"

hydrodynamic model is is absolutely different from that in case of conventional

hydrodynamics.

Collisionless hydrodynamics is usually used for description of wave processes when

there is additional temporal scale - the oscillation frequency. In collisionless case

transition to hydrodynamics and disregard of thermal motion are possible if

VT , co
— « A or VT «— (23)
co k

Here A is the wavelength.

Hence, collisionless hydrodynamics is applicable when thermal velocity is much smaller

than characteristic velocity of wave motions. The system of equations in this case

consists of equations (18), (19) in which the friction force is omitted. Equation of state of

plasma components are often used instead of equation (21).


