
Lecture 5

Kinetic equation for plasma

fa(t,r,v) is a distribution function for particles of type a (electrons, ions, a = e,i).

f(t,r,v) is a number density of particles in 6-d phase space.

J fa(t,r,v}dv = na (t,r} - the number density of the particles of type a.

n(t,r)dxdydz = n(t,f)dV - an average number of particles in dV = dxdydz.

Two types of fields are acting on charged particles:

(i) regular electric and magnetic fields created by external sources or by charge

separation or by currents in plasma in volumes with sizes larger than hD.

(ii) Collisions

If mean free time for collisions ( T e i , T e e , T j j ) is longer than characteristic time for

processes under consideration, the plasma can be considered as collisionless. Dynamics

of the / is described by the kinetic equation
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the kinetic equation is a consequence of Liouville theorem: Every elementary volume dY

in phase space occupied by some particles is constant.
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This is true because all points in phase space move under continuous action of

macroscopic fields.

dY = dT' (2)

The number of particles in the phase volume is constant dN = fdT = const. Therefore

/a(?,r,v) = const, i.e.
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Electric and magnetic fields are created not only by external sources but by space charges

and currents of electrons and ions as well. For example,

V • E = 4jip = 4jie(ffdv + f f e d v ) )
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E and 5 fields are so called self-consistent fields.

Kinetic equation (4) where E and B are self-consistent or created by external sources is

Vlasov equation. The self-consistent fields are superposition of micro-fields of separate

particles that are acting coherently on the distances comparable with the wavelength.

They describe collective interaction of particles. In ideal gas, each atom moves on its

independent trajectory and collides with other atoms. In that case forces are externally

imposed:
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This is Boltzman equation.

Ideal gas is an individualistic society.

Plasma is a medium where collective interactions of big ensemble of particles drives self-

consistent E and B fields.

E and B are determined from Maxwell's equations where charge density and current

density are calculated using particle distribution functions
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In case when not only macroscopic fields ( A > XD) but also microfields of separate

particles play significant role, equation (1) is not correct. Due to Coulomb collisions

particles can jump from one region of the phase space to another. Because of this, the

number of particles in an element of the phase volume is not constant.

Taking into account Coulomb collisions we obtain
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— is a collision operator - the change of distribution function due to collisions in

unit time.

We will use a simplified form of collision operator, so called T- approximation:
fo~f

\dt)coll T

T means an average time between two collisions, /0 is an equilibrium Maxwellian

distribution function. The physical meaning of r.h. side of (8) is that as a result of

collisions distribution function / approaches exponentially to /0 (restoration of

Maxwellian distribution over velocities).

When we use kinetic equation in T-approximation, we ought to be careful. We found

before that T is different for different types of collisions in plasma. Different processes

in plasma are characterized by different T. For electrical conductivity T = Tei. For

thermal conductivity both T = Tee and T = Tei are important.

Electrical conductivity of plasma in electric field

In homogeneous plasma in stationary case:

mp dv T,,-



Let fe = /Q + f f . For sufficiently small electric field ff « /Q and we neglect the

rtf e

term ~ E^-. Then (9) has the form:
dv

me dv Tei

The current density is defined by:
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The relation (11) that is the same as Equation (3.3) is just Ohm's law for plasma.

The physical meaning of approximation of a weak electric field:
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The relation (12) can be written in the form
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where EDreicer is described by formula (3.10').

Once more, we obtained the sane result: the Ohm's law for plasma (11) is applicable if

electric field is much smaller than the Dreicer field. This is equivalent to the statement

that momentum acquired by electron between two collisions should be much smaller

them the thermal momentum.

Thermal conductivity

For electron thermal conductivity, we should take into account e-i and e-e collisions. For

ion thermal conductivity we should take into account i-I collisions. Ions are not scattered

by electrons.

To find the thermal conductivity, we use kinetic equation, assuming that plasma in

stationary state, E = 0, and T = T(x) where x is direction of non-homogeneity:

(13)
dx T;

Again let / = /0 + f{ and ft « f0.



Then from Equation (13), assuming that
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we obtain
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The heat flux is equal
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Introducing the new variable - = "E we obtain
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and finally
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The total heat flux consists of fluxes transported by electrons and ions. The ion flux is on

the order of me /mi in comparison with the electron flux.

The thermal conductivity coefficient

^ = _^ (iy)

A strong kinetic theory with Landau collision operator gives

' ei (18)



Let us compare (18) with electric conductivity of plasma
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It follows that the ratio of thermal to electric conductivity is proportional to T -

Videman-Franz law for metals.

Landau diffusive form of collision operator

The simplified form of the collision operator in T -approximation describes formation of

Maxwellian distribution. However, it doesn't describe the main peculiarity of Coulomb

scattering that leads to the slow (diffusive) change of the particle velocity vector due to

multiple scatterings at small angles.

Consider a distribution function integrated over two velocity components f(vx) and

assume that scattering particles are in an equilibrium state with temperature T . Multiple

scatterings lead to

(i) friction between plasma particles

(ii) (ii) diffusion in velocity space

The friction force F = —mvxv. The factional part of the collision operator can be

written in the form

\dtlcoii dvx\
dt I fa*

This term is similar to the term div(vri) in the continuity equation.

Diffusive part of the collision operator should have the form

df\F
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where D(vx) = U&vx} W, Av^ is the velocity change in a collision, the brackets

mean averaging over scatterings that can be obtained by exact consideration of multiple

scatterings.



We will obtain D(vK) by using assumption that scattering particles have temperature T.

These particles play a role of thermostat: The distribution function of scattered particles

should become a Maxwellian distribution with temperature T.

The total collision operator can be written as

(21)
coll

For Maxwellian distribution function / = /0 = const exp(- mvx /2T), we have from

(21):

T
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and
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The 3-d form of (23) is
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