
LECTURE 4

Penetration of electromagnetic wave into plasma. Transformation into plasma

oscillations.

Since the plasma permittivity is negative for CD «D electromagnetic waves cannot

penetrate into such a plasma deeper than the skin depth cl(Ji)pe . In the vicinity of the

skin layer, some unusual phenomena are developing. To understand them, let us consider

non-homogeneous plasma with density that increases monotonically in z-direction. Let

an electromagnetic wave propagates in such a plasma at some angle d towards direction

of non-homogeneity of plasma (z-direction) (Figure 1).

If the plasma density changes sufficiently slow, i.e. (DC/ ' L » 1 , where L is the

characteristic spatial scale of change of the plasma density, the problem of the wave

propagation can be solved in approximation of geometric optics. In this approximation,

the wave field can be found as a traveling wave with amplitude and wave number in the

z-direction changing slowly with z :
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The change of kz with z can be found from usual dispersion relation of electromagnetic

wave (see 3.17)
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We assumed for simplicity that the wave vector is in yz plane (incidence plane).

On the left from the region occupied by plasma i.e. in the vacuum this equation has the

form
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Since k = ksind , the dispersion equation (2) can be written in the following form:
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The point where £ = sin 9 is called the turning point. At this point kz changes its sign

and the wave is reflected there. The field structure is shown in the Fig. 2.



On the left from the turning point the oscillatory structure of the standing electromagnetic

wave is created by incident and reflected electromagnetic waves. On the right from the

turning point, the field decreases exponentially.

More detail structure can be found using Maxwell's equations
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Here £ is a function of the coordinate z. Substituting B from the first of equations (4)

into the second one we obtain the following equation for E:
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Similarly excluding E, we have the equation for B :

V2B + s - B + -(Ve x (V x B)) = 0 (6)
cz £

There are two possible cases of the wave polarization: S-polarization when the electric

vector is perpendicular the incident plane, e.g. in the x-direction; and P-polarization when

the electric field vector is in the incident plane.



S-polarization

Only^. * 0 and divE = 0. Substituting£\. = Ex(z)exp(-ia>t + ikvy) into equation

(5), we obtain for E (z)
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Rather far from the turning point £ = sin 6 , solution of this equation can be obtained in

approximation of geometric optics, it coincides with formula (1). The field structure is

shown in Figure 2. To obtain solution near the turning point, we assume that in this

region the plasma density is changing linearly with distance n = «0 (1 + z/L) (here «0

is the electron density at the point where the electron plasma frequency is equal to the

wave frequency. Equation (7) has the form of the Airy equation
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here z'= z + Lsin 6 . Solution of this equations is expressed in terms of The Airy

function. Rather far from the point z'= 0, this solution is described by geometric optics

solution
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We get this oscillation solution on the left from the point z'=0 and exponential decay

takes place on the right from the turning point.



P-polarization (the wave electric field is in the incident plane)

The physical picture is more complicated. The main feature is the transformation of

electromagnetic wave into plasma oscillations in the vicinity of the point z=0, where

£ = 0. Since for P-polarization Ez * 0, this component of the wave electric field can

drive the charge separation in the direction of non-homogeneity and excite plasma

oscillations at this point. Such type of transformation of one type of oscillation into

another one occurs in plasma when their dispersion curves intersect (see Figure 3).

Let us consider the behavior of the wave amplitude near the point z=0. ^

z-component of the second Maxwell's equation from (4):
/
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Analysis of the wave magnetic field that is parallel to the x-axis can be done using

Equation (6)

+ -^(8- sin2 6)BX - -——± = 0 (10)
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It follows from this equation that the reflection point for the wave with P-polarization is

also determined from condition z = -L sin 6 . After the reflection point the wave

c
magnetic field exponentially decays with the characteristic scale on the order of

cosmO



The exact solution of the equation (10) shows that the wave magnetic field doesn't have

any anomaly at the point of the plasma resonance, so the magnetic field in formula (9)

can be considered as a constant. Then the electric field will have a singularity l/£ at the

point z=0 . (see Figure 4).

The physical reason for this is the following. The layer in the vicinity of the point

works like a capacitor where the wave energy is accumulated. The level of the energy

goes to infinity if we neglect dissipation (collisions) and put plasma temperature to be

equal zero, then v = 0, i.e. there is no outflow of the plasma wave energy out of the

layer.

This effect can be sufficient only in conditions when the reflection point and the point of

the plasma resonance are not very far from each other. The wave amplitude drops

exponentially after the turning point with
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The distance between reflection point and the plasma resonance point ( z = 0 ) is

(11)

For effective transformation of electromagnetic waves into plasma waves the condition

0)L .
Az < 1 or
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should be fulfilled. This means that effective transformation takes place for rather small

angles
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Please note that 9 cannot be zero since in this case E^ = 0 .

There is no singularity of the electric field Ez at the point z=0 if collisional dissipation

and/or the outflow of plasma wave energy from the point of plasma resonance

(V ^ 0, T * 0) are taken into account.

1. Collisional dissipation

Consider first the problem when the singularity at the resonance point is removed by

collisions. Using the expression for the permittivity of plasma with collisions (see (3.20),

(3.21))
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we find that the amplitude of the electric field along the non-homogeneity direction is

determined by the following expression:
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It follows from (14) that dissipation limits the longitudinal electric field at the level

£znux-£,(0)8*110- (15)
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Such a value is reached in the region width
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In all above formulas Bx (0) is the wave magnetic field in the vicinity of the singularity.

To find it, we should solve Equation (10). The answer is:
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here T = (ajL/c)1'3 sin# . The plot of O is shown in Figure 5. For large T,

decreases exponentially.
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Coefficient of transformation of electromagnetic waves into plasma oscillations

Is the ratio of the total dissipation power to the energy flux in the incident wave.

The dissipated power is equal
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The fact why P the dissipated power doesn't depend on V , can be explained

qualitatively: The power can be approximated by relation P = vZsmaxAz . According to

(15) and (16), £"max ~ 1/v and the width of the plasma resonance is on the order of

Lv/CO . As a result, the power doesn't depend on V .

The energy flux in the incident wave is defined by the Pointing vector and is equal to

Xc - . The coefficient of transformation is equal
4JT
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It does not depend on V but depends on the incidence angle. It has maximal value for

very small incidence angles 6 » 0.5(c/caL) ' .

2. Transformation into outflowing plasma wave

Another mechanism of limitation of the electric field in the resonance region is outflow

of the plasma wave energy. Equation describing the transformation of the

electromagnetic wave into plasma waves is the same as equation (9), where we should

take into account the "sound effect"
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As a result we obtain the following equation instead of (9):
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The term with second spatial derivative eliminates singularity at z=0. We can find the

characteristic width of resonance by substituting I/ (Az) instead of d / dz '•

Az«(L4e)
1/3 (22)

Maximal value of the electric field

L
z max (23)

Compare these two competing mechanisms. Transformation into plasma waves prevails

is the characteristic spatial scale of plasma oscillations is larger than the width of the

resonance due to collisions V < (i)(kDe / ' L) ' . In opposite case the limitation of the

longitudinal electric field in the vicinity of z=0 is connected with collisional dissipation.

The flow of energy in plasma wave is equal

I2
(24)

Here vg = d(D/ dk is the group velocity of plasma oscillations that is equal

By the order of magnitude, kz * 1/Az therefore the energy flux, transported by plasma

waves is approximately equal

2 f t L (25)

By substituting in this relationship the value of magnetic field at the resonance point from

(17), we obtain the final expression for the energy flux in the plasma wave:
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If we introduce the coefficient of transformation of electromagnetic wave into plasma

wave as a ratio of nergy fluxes in plasma and incident electromagnetic waves, we can see

that for angles 6 « (c/'coL) it is of the order of unity. More precise consideration

based on the solution of the Airy equation (21) shows that the transformation coefficient

in this case is absolutely the same as in case of dissipation of the plasma wave energy by

collisions. Therefore in both cases the same part of the energy flux of the electromagnetic

wave will be lost.


