
Lecture 2

Particle collisions in plasma

Consider a completely ionized plasma with the ion charge Ze. Then in equilibrium

plasma without external fields the main form of particle interactions is scattering in

Coulomb fields. There are three types of elementary acts of scattering - scattering of

electrons on electrons, electrons on ions and ions on ions.

Electron-ion collisions

In this case the scattering centers (ions) can be considered as motionless and probability

of scattering over some angle is defined by Rutherford formula. An electron moving with

some velocity v will scatter on many ions. Because of long range of Coulomb

interaction, overwhelming majority of scattering acts take place at large distances, and

lead to very small change of the trajectory direction (this is a feature of Rutherford

scattering on point charges). The electric force acting on electron is a superposition of

forces created by many ions and results in a very smooth change of its trajectory (Figure

1). This trajectory is strongly different from the test particle trajectory in non-ionized gas,

where it consists of broken lines that connect the positions of collisions (Figure 2).



Each scattering act due to Coulomb interaction of the test particle (electron) with

scattering center leads to turn the particle trajectory on some angle 6, i.e. to decrease of

the velocity component along initial direction of motion from v to vcos0 . It is natural

to introduce the mean free path of the particle lmfp as a distance at which the particle

preserves the initial direction of its velocity. This definition is described by the equation

l-mfp

(1)

Here dv is an average change of the velocity component along initial direction of motion

at the distance dx. Since dx = vdt, (1) can be written in the form of the equation with the

effective friction force

me — = -mev = -mevv (2)
dt l

Here v is so-called collision frequency. The friction force due to collisions is

F = -mvv.

If the electron velocity vector turns at the angle 8 due to one collisions, its component

along initial direction decreases by Av = v(l - cos6>) (see Figure 3).
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Since scatterings with small angles 6 play the main role, we can write that

Av = -vd2/2 . The velocity change due to scattering on several ( N ) ions is equal

Where summation is carried out over all TV scattering centers.

For small scattering angles the relation 6 = v± jv is correct, where v± can be found using

the component of the equation of motion perpendicular to the initial direction of the

electron velocity

Here we assumed that the electron trajectory is almost straight line, p is an impact

parameter.

Total change of v± in one collision is
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At the distance dx, the electron meets many scattering centers with all possible impact

parameters. We should carry out summation over all scattering centers to find total

change of the velocity component along initial direction of motion dv at distance dx:

2 .,., - u (8)

Here n0 is the ion number density, dSp is the area of the ring with radius p and width

dp. All ions inside the ring have the same impact parameter (see Figure 4).

As a result, we obtain
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Since integral over p diverges at both large and small p, it is necessary to use the cutting

procedure. The values of pmax and pmin can be estimated from the following.



The ion electric field can be considered as Coulomb field only at distances less than

Debye length XDe. For larger distances the electric field decreases exponentially, so

collisions with ions with the impact parameter larger than XDe should be excluded from

consideration and pmax = kDe.

As pmin we can choose the value of an impact parameter for which the scattering angle

9 » 1, so the approximation of small angles is broken. For such an impact parameter the

electron kinetic energy is on the order of potential energy of Coulomb interaction
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(b = e /kBT is classical distance of closest approach)

is so called Coulomb logarithm. The quantity under logarithm is very large (in all cases

r 10

from 10 to 10 ), and the value of the Coulomb logarithm is « 10 + 20. Using the

definition the mean free path (1) and relations (9), (11) one can obtain the expression for

<-mfp:
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An average electron mean free path due to collisions with ions lei can be obtained by

averaging (12) over the electron maxwellian distribution function

T°2 1 1
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Here Te is the electron temperature measured in Kelvin degrees.

Other average characteristics of collision processes of electrons with ions:

a. Effective cross-section is determined by the relation

(12')

b. The average time between two collisions Tei = lei /vTe , where vTe is the electron

thermal velocity.

c. The collision frequency Vei = l/Te/- . It can be calculated using the following formula

- _ H n ( c r a ~ )
vei «20 ov ' (13)}

Plasma parameter

Let us find the ratio of the plasma frequency to the electron-ion collision frequency

tope to lei
-^ = -^ - ~~r -- -^~—-> - N (14)
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Here the parameter

N = n0^De (15)

is approximately equal to the particle number in Debye shielding sphere. It is so called

plasma parameter. If this parameter is large, then collisions don't affect electron plasma

oscillations. In this case collective interactions of charge particles via fields created by

these particles mainly determine dynamics of plasma. Collective behavior of charged

particles is the most important feature of plasma.

Sometimes the plasma parameters is defined as

tf-^- (ly)

The parameter g should be small for collective interaction of plasma particles to control

the plasma behavior.

Large value of ratio (14) doesn't mean that collisions are not important in plasma

dynamics. They are important for low frequency oscillations of plasma, heating of plasma

and its diffusion. For example in tokamak plasma («0 « 10 ,r = 10 ,vei « 10 )

there are several thousands of collision during confinement time (~1 sec).

Classification of different plasmas

Parameters N and g characterize also the ideality of plasma as an ionized gas. Compare

the kinetic thermal energy with an average energy of electrostatic interaction. The

average distance to the neigbouring particle r«(l/n0)1 '3, therefore the interaction

2 1/3energy is approximately equal to e n^ . Ratio of this energy to the thermal energy
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It is much less than unity if TV is sufficiently large. So plasma with N »l (g « 1)

can be considered as ideal gas where potential energy of electrostatic interaction is much

smaller than kinetic energy of thermal motion. Such types of ideal plasmas will be

subject of our study.

If N«l, plasma is non-ideal ionized gas with strong correlation between particles

created by collisions. Such a plasma is similar to liquid that has a very complicated or

even unknown equation of state.

We can find the boundary between ideal and non-ideal plasma by putting

VT
-^- = 1
WP.

Using approximate relations v ^ e = 3 x l O (T°) ' and

cope =5.6x10 (n(\/ cm )) ' , we obtain that the boundary is determined by thepe

relation

With further increase of plasma density, plasma is going to metallic state.



Quantum effects in plasma

1 . de Broglie wave length can be comparable with the mean distance between particles

ft -1/3
'
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For smaller temperatures or larger densities electron gas in plasma starts to be degenerate.

Electrons are described by Fermi-Dirac distribution instead of Maxwellian distribution.

The boundary between classical and degenerate plasmas:

r «1.5xl(T10no /3(aw~3)

2. The energy quantum of plasma oscillations is compared with thermal (Fermi) energy

« kBT
meVTe

In this case de Broglie wave length is comparable with Debye length. The relationship

between the plasma temperature and density can be written in the following form

rri O /-\ r-i -t s~\ —

According to Pauli's principle, two electrons with the same spins cannot be located at the

same point in space. Therefore potential energy of electrostatic repulsion as well as a

returning force in plasma oscillations somewhat decrease.

As a result the dispersion relation for plasma waves is slightly different

co2 =co2
pe+-(l-ars)k

2v2
F

Here VF is the Fermi velocity, a is a numeric coefficient (-0.06), rs is dimensional

parameter that characterizes the ratio of the interaction energy to Fermi energy.
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Space plasmas

1 - ionosphere

2 - hot interstellar media

3 - solar wind plasma

4 - solar corona

"Earth" plasmas

5 - gas discharge, typical plasma of laboratory experiment

6 - tokamak plasma

7 - inertial fusion plasma

8 - plasma in metals (gas of free electrons)

9 - plasma in semiconductors



Particle scattering by waves

The similar scattering of the test electron takes place in electric fields of space charge

oscillations excited in plasma by some source. As before we can introduce the mean free

path using the same formula (1) where dv is determined with the same relation

2

dv = vcos9~--92, 62 »^-
2 v2

But now scattering of the test electron is conducted by electric fields, oscillating with

electron plasma frequency.
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Brackets mean averaging over fast oscillations. We assumed here isotropy of plasma

oscillations. It is easy to find that (E } = E /2.

As a result we obtain for dv the following relation:
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The minimal distance at which such interaction will take place is on the order of several

Debye lengths, i.e. of the order of the shortest wavelength of plasma waves dx = vja)pe .

Then

mco v

the stronger oscillations are the faster is the test particle scattering.

Scattering by thermal noise

In a state of thermal equilibrium there are always fluctuations of space charge in plasma

that lead to existence of plasma oscillations at very low level, so called thermal noise.

Electric field of oscillations is determined by equation

T
(24)

P8JT 2

Here V is plasma volume, kBT/2 is the energy of every quantum of plasma oscillations

(plasmon). We used here hypothesis about energy equipartition - in the thermal

equilibrium, the energy of every degree of freedom (particle or wave) is kBT/2.

In formula (19) np is a number of plasma waves

n = (25)P (A&)3



The numerator is the total volume of oscillations in k-space, where &max is maximal

wave number. As we discussed before, the phase velocity of electron plasma oscillations

must be larger than electron thermal velocity to avoid strong Landau damping on thermal

particles

— > vTe - mnvi e -\ max
ADe

The denominator in formula (25) is the smallest volume in k-space for plasmon with

= 7.71 1 a , a is the linear dimension of plasma.

(25°
Using (24) and (25') we obtain the energy density of thermal noise

1 k T1 "'R*

that is much less than thermal energy density of plasma

E2 • Inmse » — V- = g « 1 (27

2
Substituting Enoise in equation (23) for the electron mean free path, we obtain for

scattering of the thermal electron (v « vTe)

meVTe
2 4

/:AI i ^£> i
A 4 60/« ln >:> Z«' (28)e kBT 4jm0e pmin



Thus, electron scattering on thermal fluctuations is weaker than Coulomb collisions.

If there is some energy source for the excitation of plasma waves (e.g. electron beam)

then energy of plasma waves will exceed that of thermal noise by many order of

magnitude. Then scattering of particles by waves will become much stronger than

Coulomb collisions. This gives an explanation of so-called Langmuir paradox - fast

scattering of electron beam in plasma by self-excited plasma waves.


