Wednesday Oct. 31, 2007

1. The commutator of a real scalar field with itself is given by

$$
[\phi(x), \phi(y)] \equiv i \Delta(x-y)
$$

where

$$
\Delta(x) \equiv \Delta^{+}(x)-\Delta^{+}(-x)
$$

and

$$
i \Delta^{+}(x) \equiv \int \frac{d^{3} \vec{k}}{(2 \pi)^{3}\left(2 \omega_{\vec{k}}\right)} e^{-i k \cdot x}
$$

(a) Show that

$$
i \Delta^{+}(x)=\frac{1}{2 \pi^{3}} \int d^{4} k \delta\left(k^{2}-m^{2}\right) \theta\left(k^{0}\right) e^{-i k \cdot x}
$$

is manifestly Lorentz invariant for proper Lorentz transformations, i.e. $\Delta^{+}(\Lambda x)=\Delta^{+}(x)$. What about for improper Lorentz transformations?
(b) Prove that the real scalar field satisfies

$$
[\phi(x), \phi(y)]=0
$$

for spacelike separations $(x-y)^{2}<0$.
2. A massive vector particle with three-momentum \vec{k} has three polarizations $e^{\mu}(\vec{k}, \sigma)$. Show that the polarization sum

$$
P^{\mu \nu}(\vec{k}) \equiv \sum_{\sigma= \pm 1,0} e^{\mu}(\vec{k}, \sigma) e^{\nu *}(\vec{k}, \sigma)=-\eta^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m^{2}}
$$

for arbitrary \vec{k}, where m is the mass of the particle.
3. A massless spin-1 (vector) particle has only two polarizations $\sigma= \pm 1$. Determine these polarization vectors for a massless vector boson moving in the \hat{z} direction with three-momentum \vec{k}. What is the polarization sum $P^{i j}(\vec{k})$, for spatial indices $i, j=1,2,3$?
4. The Dirac or non-relativistic representation of Dirac γ matrices is defined by

$$
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right), \quad \gamma_{5}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

which is related to the Weyl representation by

$$
\begin{gathered}
\gamma_{\text {Dirac }}^{\mu}=U \gamma_{\text {Weyl }}^{\mu} U^{\dagger} \\
\psi_{\text {Dirac }}(x)=U \psi_{\text {Weyl }}(x),
\end{gathered}
$$

where

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

(a) Find the Dirac spinors $u(\overrightarrow{0}, \sigma)$ and $v(\overrightarrow{0}, \sigma)$ for a massive fermion in the Dirac representation.
(b) Find the spinors $u\left(k_{z}, \sigma\right)$ and $v\left(k_{z}, \sigma\right)$ in the Dirac representation and verify that they are helicity eigenstates.
5. Under charge conjugation, a Dirac field transforms as

$$
\mathcal{C} \psi(x) \mathcal{C}^{-1}=\eta_{\mathcal{C}}^{*} \psi^{c}(x)
$$

In class, it was alleged that

$$
\psi^{c}(x)=\left(-i \gamma^{2}\right) \psi^{*}(x)
$$

which is true so long as the spinors u and v satisfy

$$
\begin{aligned}
& u^{*}(\vec{k}, \sigma)=-i \gamma^{2} v(\vec{k}, \sigma) \\
& v^{*}(\vec{k}, \sigma)=-i \gamma^{2} u(\vec{k}, \sigma)
\end{aligned}
$$

(a) Verify that these spinor equations are satisfied when $\vec{k}=\overrightarrow{0}$ using the explicit spinors given in class.
(b) Construct a proof for the general case when \vec{k} does not vanish.

