Physics 215A - Problem Set \#1 due Wednesday Oct. 10, 2007

Read Srednicki 1,2

1. Consider a unitary linear operator U and an antiunitary antilinear operator U_{A}. Verify the multiplication table:

$$
\begin{array}{ccc}
& U & U_{A} \\
U & U & U_{A} \\
U_{A} & U_{A} & U
\end{array}
$$

i.e. the product of two unitary operators is a unitary operator, the product of an antiunitary and unitary operator is an antiunitary operator, etc.
2. Demonstrate that

$$
\left(\Lambda^{-1}\right)_{\nu}^{\mu}=\Lambda_{\nu}^{\mu}
$$

for a boost by $v \hat{z}$:

$$
\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma v & 0 & 0 & \gamma
\end{array}\right)
$$

and for a rotation about the \hat{z} axis by angle θ :

$$
\Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

An arbitrary Lorentz transformation Λ can be written as the product of an acceleration (boost) A and a rotation R,

$$
\Lambda=A R
$$

Show that an arbitrary Lorentz transformation satisfies

$$
\left(\Lambda^{-1}\right)_{\nu}^{\mu}=\Lambda_{\nu}^{\mu},
$$

provided that A and R do separately.
3. The algebra of the generators $J^{\mu \nu}$ of the Lorentz group is

$$
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=i\left(\eta^{\nu \rho} J^{\mu \sigma}-\eta^{\mu \rho} J^{\nu \sigma}-\eta^{\nu \sigma} J^{\mu \rho}+\eta^{\mu \sigma} J^{\nu \rho}\right)
$$

Show that the generators of rotations J^{i} and boosts K^{i}, defined by

$$
\begin{gathered}
J^{i}=\frac{1}{2} \epsilon^{i j k} J^{j k} \\
K^{i}=J^{0 i}
\end{gathered}
$$

satisfy the commutation relations

$$
\begin{aligned}
{\left[J^{i}, J^{j}\right] } & =i \epsilon^{i j k} J^{k} \\
{\left[J^{i}, K^{j}\right] } & =i \epsilon^{i j k} K^{k} \\
{\left[K^{i}, K^{j}\right] } & =-i \epsilon^{i j k} J^{k} .
\end{aligned}
$$

Note: Srednicki uses the notation $M^{\mu \nu} \equiv J^{\mu \nu}$ for the Lorentz generators.

