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Lecture 9

• Outlook for remainder of quarter

• Halzen & Martin Chapter 3

• Start of Halzen & Martin Chapter 4



Outlook for remaining Quarter

• From now on I will follow H&M more closely.
• We’ll basically cover chapters 3,4,5,6

– A lot of this should be a review of things you have
seen already either in advanced QM or intro QFT.

– Accordingly, I’ll be brief at times, and expect you
to read up on it as needed !!!

• Then skip chapter 7.
• Then parts of 8,9,10, and 11, where I am not

yet sure as to the order I’ll do them in.
• Some of this we won’t get to until next quarter.



(non-)relativistic Schroedinger Eq.

• Nonrelativistic

       E = p2/(2m)

• Relativistic

      E2 = p2+m2
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In both cases we replace:
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Covariant Notation

Aµ = (A0,A) ; Aµ = (A0,-A)

Aµ Bµ = A0 B0 - AB

The derivative 4-vector is given by:
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With: 2 = ∂µ ∂
µ

We then get the Klein-Gordon
Equation as:  ( 2 + m2 ) φ = 0



Continuity Equation

• For scattering, we need to understand the
probability density flux J, as well as the
probability density ρ.

• Conservation of probability leads to:

ρ

J
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(non-)relativistic Continuity Eq.

• Nonrelativistic • Relativistic
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In both cases we have plane wave solutions as:
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Covariant Notation
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j
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Transforms like a 4-vector

Covariant continuity equation

For the plane wave solutions we find:

! 

" = 2E |N |2

j = 2p |N |2

# 
$ 
% 
J

µ = 2pµ
|N |

2



Why   ρ∝E   ?

ρd3x = constant under lorentz transformations

However, d3x gets lorentz contracted.
Therefore, ρ must transform time-like, i.e. dilate.

! 

d
3
x" d

3
x # 1$ v 2

% " % 1$ v 2



Energy Eigenvalues of K.G. Eq.

( 2 + m2 ) φ = 0

Or

E2 = p2 + m2

⇓
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Positive and negative energy solutions !



Feynman-Stueckelberg
Interpretation

• Positive energy particle moving forwards in
time.

• Negative energy antiparticles moving
backwards in time.

⇒ Absorption of positron with -E is the same as
emission of electron with +E.

⇒ In both cases charge of system increases
while energy decreases.

Encourage you to read up on this in chapters 3.4 & 3.5 of H&M.



• Will get back to discussing negative energy
solutions after we understand scattering in a
potential.

• Will use scattering in a potential to discuss
perturbation theory.
– Assume potential is finite in space.
– Incoming and outgoing states are free-particle

solutions “far enough” away from potential.
– Assume V is a small perturbation throughout such

that free particle, i.e. plane wave starting point is a
meaningful approximation.



Nonrelativistic Perturbation Theory

• Assume we know the complete set of
eigenstates of the free-particle Schroedinger
Equation:

• Now solve Schroedinger Eq. in the presence
of a small perturbation V(x,t):
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Any solution can be expressed as:
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Plug this into Sch.Eq. and you get:





Assume V is small and “seen” for
only a finite amount of time.

• At times long ago, the system is in eigenstate i of the
free hamiltonian because it’s far away from V.

• At times far in the future, the system is in eigenstate f
of the free hamiltonian because it’s far away from V.

• After integration over time, we thus get:
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<= Assume V is time independent

<= starting point: i -> f 

Result of time integration.





Meaning of

• δ-function guarantees energy conservation.

=> Uncertainty principle guarantees that Tfi is
meaningful only as t -> infinity.

• We thus define a more meaningful quantity W,
the “transition amplitude per unit time” by
dividing with t, and then letting t -> infinity.
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Aside
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The second integral is basically t, and thus 
cancels with the 1/t, making the limit building trivial.
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Physically meaningful quantities

• The transition probability per unit time, W,
becomes physically meaningful once you
integrate over a set of initial and final states.

• Though typically, we start with a specific initial
and a set of final states:

! 

Wfi = 2" dE f# $(E f )Vfi

2

%(E f & Ei)

Wfi = 2" Vfi

2

$(Ei) <= Fermi’s Golden Rule



Fermi’s Golden Rule

• We find Fermi’s Golden Rule as the leading order in
perturbation theory.

• This begs the question, what’s the next order, and
how do we get it?

• In our lowest order approximation, we scattered from
an initial state i to a final state f.

• The obvious improvement is to allow for double
scattering from i to any n to f, and sum over all n.



Second Order
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What have we learned?

• For each interaction vertex we get a vertex factor Vfi .

• For the propagation via an intermediate state we
gain a “propagator” factor 1/(Ei-En) .

• The intermediate state is virtual, and thus does not
require energy conservation.

• However, energy is conserved between initial and
final state.
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Photon absorption by Particle vs Antiparticle

• Particle scatter in field • Antipart. scatter in field
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Particle and antiparticle have the same interaction with EM field.



Pair Creation from this potential
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Energy is conserved as it should be.

This wave function formalism is thus capable of describing
particles, antiparticles, and pair production.



“Rules”

• Antiparticles get arrow that is backwards in
time.

• “Incoming” and “outgoing” is defined by how
the arrows point to the vertex.

• Antiparticles get negative energy assigned.



H&M Chapter 4

• Electrodynamics of Spinless particles
– We replace pµ with pµ + eAµ in classical EM for a

particle of charge -e moving in an EM potential Aµ

– In QM, this translates into:

– And thus to the modified Klein Gordon Equation:
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V here is the potential energy of the perturbation.



Take results form Perturbation
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<= covariant form Integrate by parts

EM current for i -> f transition.

Using plane wave solutions



Aside on current
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Regular current we talked about in the beginning today:
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Transition current from i to f:

The difference is that for regular current i=f , and the
wave function piece cancels as a result.



Electron Muon Scattering
Overview

• Use what we just did
– Electron scattering in EM field

• With the field being the one generated by the
muon as source.
– Use covariant form of maxwell’s equation in

Lorentz Gauge to get V, the perturbation potential.

• Plug it into Tfi

• Then head into more general discussion of
how to express cross section in terms of
invariant amplitude (or “Matrix Element”).



Electron Muon scattering

 2 Aµ = Jµ(2)  Maxwell Equation
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Note: 2 eiqx = -q2 eiqx

Note the symmetry: (1) <-> (2)

Note the structure: Vertex x propagator x Vertex


