Physics 214 UCSD/225a UCSB Lecture 9

- Outlook for remainder of quarter
- Halzen \& Martin Chapter 3
- Start of Halzen \& Martin Chapter 4

Outlook for remaining Quarter

- From now on I will follow H\&M more closely.
- We'll basically cover chapters 3,4,5,6
- A lot of this should be a review of things you have seen already either in advanced QM or intro QFT.
- Accordingly, l'll be brief at times, and expect you to read up on it as needed !!!
- Then skip chapter 7.
- Then parts of $8,9,10$, and 11 , where I am not yet sure as to the order l'll do them in.
- Some of this we won't get to until next quarter.

(non-)relativistic Schroedinger Eq.

- Nonrelativistic

$$
\begin{gathered}
\mathrm{E}=\mathrm{p}^{2} /(2 \mathrm{~m}) \\
\left(i \frac{\partial}{\partial t}+\frac{\nabla^{2}}{2 m}\right) \psi=0
\end{gathered}
$$

$$
\mathrm{E}^{2}=\mathrm{p}^{2}+\mathrm{m}^{2}
$$

$$
-\frac{\partial^{2}}{\partial t^{2}} \phi=\left(-\nabla^{2}+m^{2}\right) \phi
$$

In both cases we replace:

$$
\begin{aligned}
E & \rightarrow i \frac{\partial}{\partial t} \\
p & \rightarrow-i \nabla
\end{aligned}
$$

Covariant Notation

$$
\mathrm{A}^{\mu}=\left(\mathrm{A}^{0}, \mathbf{A}\right) ; \mathrm{A}_{\mu}=\left(\mathrm{A}^{0},-\mathbf{A}\right)
$$

$A^{\mu} B_{\mu}=A^{0} B^{0}-A B$

The derivative 4-vector is given by:

$$
\begin{array}{ll}
\partial^{\mu}=\left(\frac{\partial}{\partial t},-\nabla\right) & \text { With: } \square^{2}=\partial_{\mu} \partial^{\mu} \\
\text { We then get the Klein-Gordon } \\
\partial_{\mu}=\left(\frac{\partial}{\partial t}, \nabla\right) & \text { Equation as: }\left(\square^{2}+\mathrm{m}^{2}\right) \phi=0
\end{array}
$$

Continuity Equation

- For scattering, we need to understand the probability density flux \mathbf{J}, as well as the probability density ρ.
- Conservation of probability leads to:

$$
\begin{aligned}
& -\frac{\partial}{\partial t} \int_{V} \rho d V=\int_{S} \vec{j} \cdot \hat{n} d s=\int_{V} \nabla J d V \\
& \Rightarrow \nabla J+\frac{\partial \rho}{\partial t}=0
\end{aligned}
$$

(non-)relativistic Continuity Eq.

- Nonrelativistic

$$
\begin{aligned}
& \rho=|\psi|^{2} \\
& J=\frac{-i}{2 m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)
\end{aligned}
$$

- Relativistic

$$
\begin{aligned}
& \rho=i\left(\phi^{*} \frac{\partial \phi}{\partial t}-\phi \frac{\partial \phi^{*}}{\partial t}\right) \\
& J=-i\left(\phi^{*} \nabla \phi-\phi \nabla \phi^{*}\right)
\end{aligned}
$$

In both cases we have plane wave solutions as:

$$
\phi(t, \vec{x})=N e^{-i p_{\mu} x^{\mu}}
$$

Covariant Notation

$$
\begin{aligned}
& j^{\mu}=(\rho, \vec{j}) \\
& \partial^{u} j_{\mu}=0
\end{aligned}
$$

Transforms like a 4-vector

Covariant continuity equation

For the plane wave solutions we find:

$$
\left.\begin{array}{l}
\rho=2 E|N|^{2} \\
\vec{j}=2 \vec{p}|N|^{2}
\end{array}\right\} J^{\mu}=2 p^{\mu}|N|^{2}
$$

Why $\rho \propto E$?

$\rho d^{3} x=$ constant under lorentz transformations

However, $d^{3} \times$ gets lorentz contracted.
Therefore, ρ must transform time-like, i.e. dilate.

$$
\begin{aligned}
& d^{3} x \rightarrow d^{3} x \cdot \sqrt{1-v^{2}} \\
& \rho \rightarrow \rho / \sqrt{1-v^{2}}
\end{aligned}
$$

Energy Eigenvalues of K.G. Eq.

$$
\begin{gathered}
\left(\square^{2}+\mathrm{m}^{2}\right) \phi=0 \\
\text { Or } \\
\mathrm{E}^{2}=\mathrm{p}^{2}+\mathrm{m}^{2} \\
\Downarrow \\
\\
E= \pm \sqrt{p^{2}+m^{2}}
\end{gathered}
$$

Positive and negative energy solutions!

Feynman-Stueckelberg Interpretation

- Positive energy particle moving forwards in time.
- Negative energy antiparticles moving backwards in time.
\Rightarrow Absorption of positron with $-E$ is the same as emission of electron with $+E$.
\Rightarrow In both cases charge of system increases while energy decreases.

Encourage you to read up on this in chapters $3.4 \& 3.5$ of H\&M.

- Will get back to discussing negative energy solutions after we understand scattering in a potential.
- Will use scattering in a potential to discuss perturbation theory.
- Assume potential is finite in space.
- Incoming and outgoing states are free-particle solutions "far enough" away from potential.
- Assume V is a small perturbation throughout such that free particle, i.e. plane wave starting point is a meaningful approximation.

Nonrelativistic Perturbation Theory

- Assume we know the complete set of eigenstates of the free-particle Schroedinger Equation:

$$
\begin{aligned}
& H \phi_{n}=E_{n} \phi \\
& \int_{\text {Vol }} \phi_{n}^{*} \phi_{m} d^{3} x=\delta_{n m}
\end{aligned}
$$

- Now solve Schroedinger Eq. in the presence of a small perturbation $V(\mathbf{x}, \mathrm{t})$:
$(H+V) \psi=i \frac{\partial \psi}{\partial t}$

Any solution can be expressed as: $\psi=\sum_{n} a_{n}(t) \phi_{n}(x) e^{-i E_{n} t} \quad$ Plug this into Sch.Eq. and you get:

$i \sum_{n} \frac{d a_{n}(t)}{d t} \phi_{n}(x) e^{-i E_{n} t}=V(x, t) \sum_{n} a_{n}(t) \phi_{n}(x) e^{-i E_{n} t}$

$$
\frac{d a_{f}(t)}{d t}=-i \sum_{n} a_{n}(t) e^{i\left(E_{f}-E_{n}\right) t} \int \phi_{f}^{*} V \phi_{n} d^{3} x
$$

Assume V is small and "seen" for only a finite amount of time.

- At times long ago, the system is in eigenstate i of the free hamiltonian because it's far away from V .
- At times far in the future, the system is in eigenstate f of the free hamiltonian because it's far away from V .
- After integration over time, we thus get:

$$
\begin{aligned}
& \frac{d a_{f}}{d t}=-i e^{-i\left(E_{f}-E_{i}\right)} \int d^{3} x \phi_{f}^{*} V \phi_{i}<=\text { starting point: i -> f } \\
& V_{f i} \equiv \int d^{3} x \phi_{f}^{*} V(x) \phi_{i} \quad<=\text { Assume } \mathrm{V} \text { is time independent } \\
& T_{f i} \equiv a_{f}=-i V_{f i} \int d t e^{-i\left(E_{f}-E_{i}\right)}=-2 \pi i V_{f i} \delta\left(E_{f}-E_{i}\right)
\end{aligned}
$$

Result of time integration.

Meaning of $T_{f i}=-2 \pi i V_{f i} \delta\left(E_{f}-E_{i}\right)$

- δ-function guarantees energy conservation.
=> Uncertainty principle guarantees that $T_{f i}$ is meaningful only as t-> infinity.
- We thus define a more meaningful quantity W , the "transition amplitude per unit time" by dividing with t, and then letting $t->$ infinity.

$$
W=\lim _{t \rightarrow \infty} \frac{\left|T_{f i}\right|^{2}}{t}=2 \pi\left|V_{f i}\right|^{2} \delta\left(E_{f}-E_{i}\right)
$$

Aside

$$
W=\lim _{t \rightarrow \infty} \frac{\left|T_{f i}\right|^{2}}{t}=\lim _{t \rightarrow \infty} 2 \pi \frac{\left|V_{f i}\right|^{2}}{t} \delta\left(E_{f}-E_{i}\right) \int d t e^{-i\left(E_{f}-E_{i}\right)}
$$

The second integral is basically t , and thus cancels with the $1 / t$, making the limit building trivial.

$$
\begin{aligned}
& T_{f i} T_{f i}^{*}=\left(-i V_{f i} \int d t e^{-i\left(E_{f}-E_{i}\right)}\right)\left(-i V_{f i} \int d t e^{-i\left(E_{f}-E_{i}\right)}\right)^{*}= \\
& \left|T_{f i}\right|^{2}=2 \pi\left|V_{f i}\right|^{2} \delta\left(E_{f}-E_{i}\right) \int d t e^{-i\left(E_{f}-E_{i}\right)}
\end{aligned}
$$

Physically meaningful quantities

- The transition probability per unit time, W, becomes physically meaningful once you integrate over a set of initial and final states.
- Though typically, we start with a specific initial and a set of final states:

$$
\begin{aligned}
& W_{f i}=2 \pi \int d E_{f} \rho\left(E_{f}\right)\left|V_{f i}\right|^{2} \delta\left(E_{f}-E_{i}\right) \\
& W_{f i}=2 \pi\left|V_{f i}\right|^{2} \rho\left(E_{i}\right) \quad<=\text { Fermi's Golden Rule }
\end{aligned}
$$

Fermi's Golden Rule

- We find Fermi's Golden Rule as the leading order in perturbation theory.
- This begs the question, what's the next order, and how do we get it?
- In our lowest order approximation, we scattered from an initial state i to a final state f.
- The obvious improvement is to allow for double scattering from i to any n to f, and sum over all n.

Second Order

$$
\begin{gathered}
a_{n}=-i \int d t e^{i\left(E_{n}-E_{i}\right)} V_{n i} \\
\frac{d a_{f}(t)}{d t}=L O-i \sum_{n \neq i} a_{n}(t) e^{i\left(E_{f}-E_{n}\right) t} V_{f n} \\
W_{f i}=2 \pi \left\lvert\, V_{f i}+\sum_{n \neq i} V_{f n} \frac{1}{E_{i}-E_{n}+i \varepsilon} V_{n i} \rho\left(E_{i}\right)\right.
\end{gathered}
$$

What have we learned?

- For each interaction vertex we get a vertex factor V_{fi}.
- For the propagation via an intermediate state we gain a "propagator" factor $1 /\left(E_{i}-E_{n}\right)$.
- The intermediate state is virtual, and thus does not require energy conservation.
- However, energy is conserved between initial and final state.

$$
W_{f i}=2 \pi\left|V_{f i}+\sum_{n \neq i} V_{f n} \frac{1}{E_{i}-E_{n}+i \varepsilon} V_{n i}\right|^{2} \rho\left(E_{i}\right)
$$

Photon absorption by Particle vs Antiparticle

- Particle scatter in field

$$
\begin{array}{ll}
p_{i}=\left(E_{1}, \overrightarrow{p_{1}}\right) & p_{i}=\left(-E_{2},-\overrightarrow{p_{2}}\right) \\
p_{f}=\left(E_{2}, \overrightarrow{p_{2}}\right) & p_{f}=\left(-E_{1},-\overrightarrow{p_{1}}\right) \\
T_{f i} \approx \int d t \phi_{f}^{*} V \phi_{i} \approx \int d t e^{i E_{2} t} e^{-i \omega t} e^{-i E_{1} t} & T_{f i} \approx \int d t \phi_{f}^{*} V \phi_{i} \approx \int d t e^{i\left(-E_{1}\right) t} e^{-i \omega t} e^{-i\left(-E_{2}\right) i} \\
\approx \delta\left(E_{2}-\left(\omega+E_{1}\right)\right) & \approx \delta\left(E_{2}-\left(\omega+E_{1}\right)\right)
\end{array}
$$

Particle and antiparticle have the same interaction with EM field.

Pair Creation from this potential

$$
\begin{aligned}
& p_{i}=\left(-E_{1},-\overrightarrow{p_{1}}\right) \\
& p_{f}=\left(E_{2}, \overrightarrow{p_{2}}\right) \\
& T_{f i} \approx \int d t \phi_{f}^{*} V \phi_{i} \approx \int d t e^{i E_{2} t} e^{-i \omega t} e^{-i\left(-E_{1}\right) t} \\
& \approx \delta\left(E_{2}+E_{1}-\omega\right)
\end{aligned}
$$

Energy is conserved as it should be.

This wave function formalism is thus capable of describing particles, antiparticles, and pair production.

"Rules"

- Antiparticles get arrow that is backwards in time.
- "Incoming" and "outgoing" is defined by how the arrows point to the vertex.
- Antiparticles get negative energy assigned.

H\&M Chapter 4

- Electrodynamics of Spinless particles
- We replace p^{μ} with $p^{\mu}+e A^{\mu}$ in classical EM for a particle of charge -e moving in an EM potential A^{μ}
- In QM, this translates into:

$$
i \partial^{\mu} \rightarrow i \partial^{\mu}+e A^{\mu}
$$

- And thus to the modified Klein Gordon Equation:

$$
\begin{aligned}
& \left(\partial^{\mu} \partial_{\mu}+m^{2}\right) \phi=-V \phi \\
& V=-i e\left(\partial^{\mu} A_{\mu}+A^{\mu} \partial_{\mu}\right)-e^{2} A^{2}
\end{aligned}
$$

\checkmark here is the potential energy of the perturbation.

Take results form Perturbation

$$
V=-i e\left(\partial^{\mu} A_{\mu}+A^{\mu} \partial_{\mu}\right)-e^{2} A^{2}
$$

$T_{f i}=-i \int \phi_{f}^{*} V(x) \phi_{i} d^{4} x<=$ covariant form Integrate by parts
$T_{f i}=i \int \phi_{f}^{*} i e\left(A^{\mu} \partial_{\mu}+\partial^{\mu} A_{\mu}\right) \phi_{i} d^{4} x+O\left(e^{2}\right)$
$T_{f i}=i \int i e\left(\phi_{f}^{*}\left(\partial_{\mu} \phi_{i}\right)-\left(\partial_{\mu} \phi_{f}^{*}\right) \phi_{i}\right) A^{\mu} d^{4} x+O\left(e^{2}\right)$
$T_{f i}=-i \int J_{\mu} A^{\mu} d^{4} x+O\left(e^{2}\right) \quad E M$ current for i-> f transition.
$J_{\mu}=-i e\left(\phi_{f}^{*}\left(\partial_{\mu} \phi_{i}\right)-\left(\partial_{\mu} \phi_{f}^{*}\right) \phi_{i}\right)$
$J_{\mu}=-e N_{i} N_{f}\left(p_{i}+p_{f}\right) e^{i\left(p_{f}-p_{i}\right) x}$
Using plane wave solutions

Aside on current

Regular current we talked about in the beginning today:

$$
\left.\begin{array}{l}
\rho=2 E|N|^{2} \\
\vec{j}=2 \vec{p}|N|^{2}
\end{array}\right\} J^{\mu}=2 p^{u}|N|^{2}
$$

Transition current from i to f:

$$
\begin{aligned}
J_{\mu} & =-i e\left(\phi_{f}^{*}\left(\partial_{\mu} \phi_{i}\right)-\left(\partial_{\mu} \phi_{f}^{*}\right) \phi_{i}\right) \\
J_{\mu} & =-e N_{i} N_{f}\left(p_{i}+p_{f}\right) e^{i\left(p_{f}-p_{i}\right) x}
\end{aligned}
$$

The difference is that for regular current $i=f$, and the wave function piece cancels as a result.

Electron Muon Scattering Overview

- Use what we just did
-Electron scattering in EM field
- With the field being the one generated by the muon as source.
- Use covariant form of maxwell's equation in Lorentz Gauge to get V , the perturbation potential.
- Plug it into T_{fi}
- Then head into more general discussion of how to express cross section in terms of invariant amplitude (or "Matrix Element").

Electron Muon scattering

$\square^{2} A^{\mu}=J^{\mu}{ }_{(2)}$ Maxwell Equation
Note: $\square^{2} \mathrm{e}^{\mathrm{iqx}}=-q^{2} \mathrm{e}^{\mathrm{iqx}}$

$$
\begin{aligned}
J_{(2)}^{\mu} & =-e N_{B} N_{D}\left(p_{D}+p_{B}\right)^{\mu} e^{i\left(p_{D}-p_{B}\right) x} \\
A^{\mu} & =-\frac{1}{q^{2}} J_{(2)}^{u}
\end{aligned}
$$

$$
T_{f i}=-i \int J_{\mu}^{(1)} \frac{-1}{q^{2}} J_{(2)}^{\mu} d^{4} x \longleftarrow \text { Note the symmetry: }(1)<->(2)
$$

$$
T_{f i}=-i N_{A} N_{B} N_{C} N_{D}(2 \pi)^{4} \delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right) M
$$

$$
-i M=\left(i e\left(p_{A}+p_{C}\right)^{\mu}\right) \frac{-i g_{\mu v}}{q^{2}}\left(i e\left(p_{D}+p_{B}\right)^{v}\right)
$$

Note the structure: Vertex x propagator x Vertex

