Physics 214 UCSD/225a UCSB Lecture 7 Finish Chapter 2 of H&M

- November revolution, charm and beauty CP symmetry and violation
- Simple example
- Unitarity matrix for leptons and quarks
 Beginning of Neutrino Physics

Missed a week due to fire in SD. Let's skip some stuff!

- Magnetic moment of proton etc.
- November revolution
 - Charm
 - Beauty
 - OZI suppression
- I encourage you to read up on this in chapter 2 of H&M

Note:

-> This requires CP because weak interactions maximally violate parity.

-> We will ignore subtleties in the difference between lepton and quark sector. \Rightarrow We'll get back to this next quarter.

 \Rightarrow All we care for now is that there's a 3x3 unitary matrix of couplings involved.

Breaking CP is easy

⇒Add complex coupling to Lagrangian.
⇒Allow 2 or more channels
⇒Add CP symm. Phase, e.g. via dynamics.

$$\mathbf{CP} \ \gamma = -\gamma \qquad \mathbf{CP} \ \delta = +\delta$$

$$A_{cp} = \frac{\mathcal{B}(B^0 \to K^+ \pi^-) - \mathcal{B}(\bar{B^0} \to K^- \pi^+)}{\mathcal{B}(B^0 \to K^+ \pi^-) + \mathcal{B}(\bar{B^0} \to K^- \pi^+)}$$

$$= \frac{-2|TP| \sin \gamma \sin \delta}{|T|^2 + |P|^2 + 2|TP| \cos \gamma \cos \delta}$$

Breaking CP in Standard Model

- Where does the CP violating phase come from?
 - 3x3 unitary matrix => 3 angles + 6 phases
 - 2N² parameters, N² constraints from unitarity
 - 6 spinors with arbitrary phase convention
 - Only relative phase matters because only $|M|^2$ is physical. \Rightarrow Only 5 phases can be used to define a convention.
 - ⇒ One phase left in 3x3 matrix that has physical consequences.

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_x c_z & s_x c_z & s_z e^{-i\phi} \\ -s_x c_y - c_x s_y s_z e^{i\phi} & c_x c_y - s_x s_y s_z e^{i\phi} & s_y c_z \\ s_x s_y - c_x c_y s_z e^{i\phi} & -c_x s_y - s_x c_y s_z e^{i\phi} & c_y c_z \end{pmatrix}$$

x,y,z are euler angles. c=cos, s=sin.

Note: sin(z) = 0 <=> NO CP violating phase left !!!

CP violation summary

- CP violation is easy to add in field theory:
 - Complex coupling in Lagrangian
 - Interference of channels with:
 - Different CP violating phase
 - Different CP conserving phase
- Standard Model implements this via:
 - CP violating phase in charged current coupling across 3 families
 - CP conserving phase via:
 - Dynamics, e.g. Breit Wigner resonance lineshape
 - Flavor Mixing & oscillation in neutrino or quark sector

Let's look at neutrino sector in some detail !

Aside:

- If you want to know more about the details, please check out:
- Lecture 9/20/2000 and further reading for it
- It constructs all possible conventions for the CKM matrix in probably more detail than you ever want to know.

Mixing in Standard Model

- Weak eigenstates not equal mass eigenstates.
 - Mass eigenstates responsible for propagation in time.
 - Weak eigenstates responsible for production and/or decay.
- ⇒Oscillation between weak eigenstates as a function of time.

 \Rightarrow Discuss this in detail for Neutrino sector now.

Neutrino mixing

- At the W vertex an electron-neutrino is created together with a positron.
- That electron-neutrino is a superposition of mass eigenstates: $\sum_{i=1}^{3} U^* | u(t) \rangle$

$$\left|\boldsymbol{v}_{e}(t)\right\rangle = \sum_{i=1}^{5} U_{ei}^{*} \left|\boldsymbol{v}_{i}(t)\right\rangle$$

• The time evolution of the mass eigenstate can be described either in its rest-frame or in the labframe:

$$\left|\boldsymbol{\nu}_{i}(t)\right\rangle = e^{-im_{i}t_{i}}\left|\boldsymbol{\nu}_{i}(0)\right\rangle = e^{-i(E_{i}t-p_{i}L)}\left|\boldsymbol{\nu}_{i}(0)\right\rangle$$

• For interference among the mass eigenstates to be possible, they all have to have the same E because experimentally we average over time.

Time average demands E_i=E

Oscillation Amplitude

$$Amp(\boldsymbol{\nu}_{\mu} \rightarrow \boldsymbol{\nu}_{\tau}) = \left\langle \boldsymbol{\nu}_{\tau} \left| e^{-iEt} \sum_{i=1}^{3} e^{ip_{i}L} U_{\mu i}^{*} \right| \boldsymbol{\nu}_{i} \right\rangle$$

$$Amp(\boldsymbol{\nu}_{\mu} \rightarrow \boldsymbol{\nu}_{\tau}) = e^{-iEt} \sum_{i, j=1}^{3} e^{ip_{i}L} U_{\mu i}^{*} U_{\tau j} \langle \boldsymbol{\nu}_{j} | \boldsymbol{\nu}_{i} \rangle$$

$$Amp(\nu_{\mu} \rightarrow \nu_{\tau}) = e^{-iEt} \sum_{i=1}^{3} e^{ip_i L} U_{\mu i}^* U_{\tau i}$$

Next we taylor expand p_i using:

$$p_i = \sqrt{E^2 - m_i^2} = E - \frac{m_i^2}{2E} + \dots$$

Oscillation Probability

$$Amp(\boldsymbol{v}_{\mu} \rightarrow \boldsymbol{v}_{\tau}) = e^{-iE(t-L)} \sum_{i=1}^{3} e^{-i\frac{m_{i}^{2}}{2E}L} U_{\mu i}^{*} U_{\tau i}$$
$$Prob(\boldsymbol{v}_{\mu} \rightarrow \boldsymbol{v}_{\tau}) = \sum_{i=1}^{3} \left| e^{-i\frac{m_{i}^{2}}{2E}L} U_{\mu i}^{*} U_{\tau i} \right|^{2}$$

In homework, you do this for the general case of N flavors. Here we do it for the simpler case of 2 flavors only.

Simple math aside

$$|1 - e^{ix}|^2 = (1 - [\cos x + i \sin x])(1 - [\cos x - i \sin x])$$

= $[1 - \cos x]^2 + \sin^2 x$
= $2(1 - \cos x)$

We'll need this is a second.

2 flavor oscillation probability

$$\begin{aligned} \left| U_{11}U_{21}e^{-im_{1}^{2}\frac{L}{2E}} + U_{12}U_{22}e^{-im_{2}^{2}\frac{L}{2E}} \right|^{2} &= \left| U_{11}U_{21} + U_{12}U_{22}e^{i(m_{1}^{2}-m_{2}^{2})\frac{L}{2E}} \right|^{2} \\ &= \left| -\cos\theta\sin\theta + \cos\theta\sin\theta e^{i(m_{1}^{2}-m_{2}^{2})\frac{L}{2E}} \right|^{2} &= \cos^{2}\theta\sin^{2}\theta \left| 1 - e^{i(m_{1}^{2}-m_{2}^{2})\frac{L}{2E}} \right|^{2} \\ &= \cos^{2}\theta\sin^{2}\theta \left[(1 - \cos\Delta)^{2} + \sin^{2}\Delta \right] = 2\cos^{2}\theta\sin^{2}\theta \left[1 - \cos\Delta \right] \\ &= \frac{1}{2}\sin^{2}2\theta \left[2\sin^{2}\frac{\Delta}{2} \right] \\ \Delta &= (m_{1}^{2} - m_{2}^{2})\frac{L}{2E} \end{aligned}$$

This is a bit simplistic, as it ignores matter effects. We'll discuss those on Wednesday.

Discussion of Oscillation Equation

$$\Pr{ob(v_e \rightarrow v_\mu)} = \sin^2 2\theta \left[\sin^2 \frac{(m_1^2 - m_2^2)L}{4E} \right]$$

- Depends on difference in mass squared.
 - No mixing if masses are identical
 - Insensitive to mass scale
 - Insensitive to mass hierarchy
- Depends on $sin^2(2\theta)$
 - Need large angle to see large effect
- Depends on L/4E
 - Exp. with unfortunate L/E won't see any effect.
 - Exp. with variable L/E can measure both angle and mass squared difference.
 - Exp. with $\Delta m^2 L/4E >>1$ and some energy spread average over sin² -> 1/2

Experimental situation

- Sources of electron neutrinos
 - Sun
 - Reactors

- Sources of muon neutrinos
 - From charged pion beams
 - From charged pion decay in atmosphere

Atmospheric neutrinos

- Expect v_{μ} anti- v_{μ} in equal numbers
- Expect v_e half as many as v_μ + anti- v_μ
- Can change L as a function of Zenith angle. (L ~ 15km to L ~ 13,000km)
- v_e Oscillation to v_{μ} => See excess of v_{μ} vs zenith angle
- v_{μ} Oscillation to v_{e} => See excess of v_{e} vs zenith angle
- v_e Oscillation to v_{τ} => Deficit of v_e vs zenith angle
- v_{μ} Oscillation to v_{τ} => Deficit of v_{μ} vs zenith angle

Super Kamiokande Results

Neutrinos from the Sun

- Many mechanisms, all leading to electron neutrinos with varying energies.
 - Expect: 0.5 $sin^2(2\theta)$ of solar model flux convolved with energy dependent efficiency.
- Neutrino energy too low to produce either muons or taus.
 - Electron disappearance experiments only in all but one experiment (SNO).

Solar Model is Quite Complex

Neutrino Energies are quite small Very Challenging Experimentally for many decades

SNO allowed CC and NC, and was thus sensitive to all neutrino flavors => measures solar flux and electron neutrino flux.

Reactor Experiments All except KamLAND had L that is too small! => Only KamLAND saw oscillations !!!

Interpretation

- Atmospheric must be $v_{\mu} \rightarrow v_{\tau}$
 - Though tau appearance has never been seen.
 - However, electron appearance is ruled out.
 - The state that is far in mass from the other two must have very little electron neutrino content!

Two Possible Mass Hierarchies

Things we have not discussed yet.

- Majorana Neutrinos -> see homework
- "Size of CP violation" -> see homework
- Getting well collimated E via off-axis -> see homework
- Reactor neutrinos and sintheta13 -> see homework
- Resolving the mass hierarchy -> Wednesday.