Physics 214 UCSD/225a UCSB

Lecture 7

Finish Chapter 2 of H\&M

- November revolution, charm and beauty

CP symmetry and violation

- Simple example
- Unitarity matrix for leptons and quarks

Beginning of Neutrino Physics

Missed a week due to fire in SD. Let's skip some stuff!

- Magnetic moment of proton etc.
- November revolution
- Charm
- Beauty
- OZI suppression
- I encourage you to read up on this in chapter 2 of H\&M

CP Symmetry

$$
\begin{gathered}
\mathcal{L}_{C C}=\frac{g_{2} J_{\mu+}^{+} W^{+\mu}+J_{\mu}^{-} W^{-\mu}}{J_{\mu}^{+}=\left(\bar{\nu}_{e L} \bar{\nu}_{\mu L} \bar{\nu}_{\tau L}\right) \gamma_{\mu}\left(\begin{array}{c}
e_{L}^{-} \\
\mu_{L}^{-} \\
\tau_{L}^{-}
\end{array}\right)+\left(\bar{u}_{L} \bar{c}_{L} \bar{t}_{L}\right) \gamma_{\mu} \mathbf{V}_{\mathbf{C K M}}\left(\begin{array}{c}
d_{L} \\
s_{L} \\
b_{L}
\end{array}\right)} .
\end{gathered}
$$

Note:
-> This requires CP because weak interactions maximally violate parity.
-> We will ignore subtleties in the difference between lepton and quark sector.
\Rightarrow We'll get back to this next quarter.
\Rightarrow All we care for now is that there's a 3×3 unitary matrix of couplings involved.

$P=|P|$
$\delta=$ strong phase shift
$\gamma=$ difference in weak phase

$$
\mathrm{CP} \gamma=-\gamma \quad \mathrm{CP} \delta=+\delta
$$

$$
A_{c p}=\frac{\mathcal{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)-\mathcal{B}\left(\overline{B^{0}} \rightarrow K^{-} \pi^{+}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)+\mathcal{B}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)}
$$

$$
=\frac{-2|T P| \sin \gamma \sin \delta}{|T|^{2}+|P|^{2}+2|T P| \cos \gamma \cos \delta}
$$

Breaking CP

 is easy to Lagrangian.\Rightarrow Allow 2 or more channels \Rightarrow Add CP symm. Phase, e.g. via dynamics.

Breaking CP in Standard Model

-Where does the CP violating phase come from?
-3×3 unitary matrix $=>3$ angles +6 phases

- 2N ${ }^{2}$ parameters, N^{2} constraints from unitarity
- 6 spinors with arbitrary phase convention
- Only relative phase matters because only $|\mathrm{M}|^{2}$ is physical.
\Rightarrow Only 5 phases can be used to define a convention.
\Rightarrow One phase left in 3×3 matrix that has physical consequences.
$\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)=\left(\begin{array}{ccc}c_{x} c_{z} & s_{x} c_{z} & s_{z} e^{-i \phi} \\ -s_{x} c_{y}-c_{x} s_{y} s_{z} e^{i \phi} & c_{x} c_{y}-s_{y} s_{z e i \phi} & s_{y} c_{z} \\ s_{x} s_{y}-c_{x} c_{y} s_{z} e^{i \phi} & -c_{x} s_{y}-s_{x} c_{y} s_{z} e^{i \phi} & c_{y} c_{z}\end{array}\right)$
x, y, z are euler angles. $c=c o s, s=s i n$.
Note: $\sin (z)=0<=>$ NO CP violating phase left !!!

CP violation summary

- CP violation is easy to add in field theory:
- Complex coupling in Lagrangian
- Interference of channels with:
- Different CP violating phase
- Different CP conserving phase
- Standard Model implements this via:
- CP violating phase in charged current coupling across 3 families
- CP conserving phase via:
- Dynamics, e.g. Breit Wigner resonance lineshape
- Flavor Mixing \& oscillation in neutrino or quark sector

Let's look at neutrino sector in some detail!

Aside:

- If you want to know more about the details, please check out:
Lecture 9/20/2000 and further reading for it
- It constructs all possible conventions for the CKM matrix in probably more detail than you ever want to know.

Mixing in Standard Model

- Weak eigenstates not equal mass eigenstates.
- Mass eigenstates responsible for propagation in time.
- Weak eigenstates responsible for production and/or decay.
\Rightarrow Oscillation between weak eigenstates as a function of time.
\Rightarrow Discuss this in detail for Neutrino sector now.

Neutrino mixing

- At the W vertex an electron-neutrino is created together with a positron.
- That electron-neutrino is a superposition of mass eigenstates:

$$
\left|v_{e}(t)\right\rangle=\sum_{i=1}^{3} U_{e i}^{*}\left|v_{i}(t)\right\rangle
$$

- The time evolution of the mass eigenstate can be described either in its rest-frame or in the labframe:

$$
\left|v_{i}(t)\right\rangle=e^{-i m_{i} t_{i}}\left|v_{i}(0)\right\rangle=e^{-i\left(E_{i} t-p_{i} L\right)}\left|v_{i}(0)\right\rangle
$$

- For interference among the mass eigenstates to be possible, they all have to have the same E because experimentally we average over time.

Time average demands $\mathrm{E}_{\mathrm{i}}=\mathrm{E}$

Oscillation Amplitude

$$
\begin{aligned}
& \operatorname{Amp}\left(\nu_{\mu} \rightarrow v_{\tau}\right)=\left\langle v_{\tau}\right| e^{-i E t} \sum_{i=1}^{3} e^{i p_{i} L} U_{\mu i}^{*}\left|v_{i}\right\rangle \\
& \operatorname{Amp}\left(\nu_{\mu} \rightarrow v_{\tau}\right)=e^{-i E t} \sum_{i, j=1}^{3} e^{i p_{i} L} U_{\mu i}^{*} U_{\tau j}\left\langle v_{j} \mid v_{i}\right\rangle \\
& \operatorname{Amp}\left(v_{\mu} \rightarrow v_{\tau}\right)=e^{-i E t} \sum_{i=1}^{3} e^{i p_{i} L} U_{\mu i}^{*} U_{\tau i}
\end{aligned}
$$

Next we taylor expand p_{i} using:

$$
p_{i}=\sqrt{E^{2}-m_{i}^{2}}=E-\frac{m_{i}^{2}}{2 E}+\ldots
$$

Oscillation Probability

$$
\begin{aligned}
& \operatorname{Amp}\left(v_{\mu} \rightarrow v_{\tau}\right)=e^{-i E(t-L)} \sum_{i=1}^{3} e^{-i \frac{m_{i}^{2}}{2 E} L} U_{\mu i}^{*} U_{\tau i} \\
& \operatorname{Pr} o b\left(v_{\mu} \rightarrow v_{\tau}\right)=\sum_{i=1}^{3}\left|e^{-i \frac{m_{i}^{2}}{2 E} L} U_{\mu i}^{*} U_{\tau i}\right|^{2}
\end{aligned}
$$

In homework, you do this for the general case of N flavors. Here we do it for the simpler case of 2 flavors only.

Simple math aside

$$
\begin{aligned}
& \left|1-e^{i x}\right|^{2}=(1-[\cos x+i \sin x])(1-[\cos x-i \sin x]) \\
& =[1-\cos x]^{2}+\sin ^{2} x \\
& =2(1-\cos x)
\end{aligned}
$$

We'll need this is a second.

2 flavor oscillation probability

$$
\begin{aligned}
& \left|U_{11} U_{21} e^{-i m_{1}^{2} \frac{L}{2 E}}+U_{12} U_{22} e^{-i m_{2}^{2} \frac{L}{2 E}}\right|^{2}=\left|U_{11} U_{21}+U_{12} U_{22} e^{i\left(m_{1}^{2}-m_{2}^{2}\right) \frac{L}{2 E}}\right|^{2} \\
& =\left|-\cos \theta \sin \theta+\cos \theta \sin \theta e^{i\left(m_{1}^{2}-m_{2}^{2} \frac{L}{2 E}\right.}\right|^{2}=\cos ^{2} \theta \sin ^{2} \theta\left|1-e^{i\left(m_{1}^{2}-m_{2}^{2}\right) \frac{L}{2 E}}\right|^{2} \\
& =\cos ^{2} \theta \sin ^{2} \theta\left[(1-\cos \Delta)^{2}+\sin ^{2} \Delta\right]=2 \cos ^{2} \theta \sin ^{2} \theta[1-\cos \Delta] \\
& =\frac{1}{2} \sin ^{2} 2 \theta\left[2 \sin ^{2} \frac{\Delta}{2}\right] \\
& \Delta=\left(m_{1}^{2}-m_{2}^{2}\right) \frac{L}{2 E}
\end{aligned}
$$

This is a bit simplistic, as it ignores matter effects. We'll discuss those on Wednesday.

Discussion of Oscillation Equation

$$
\operatorname{Pr} o b\left(v_{e} \rightarrow v_{u}\right)=\sin ^{2} 2 \theta\left[\sin ^{2} \frac{\left(m_{1}^{2}-m_{2}^{2}\right) L}{4 E}\right]
$$

- Depends on difference in mass squared.
- No mixing if masses are identical
- Insensitive to mass scale
- Insensitive to mass hierarchy
- Depends on $\sin ^{2}(2 \theta)$
- Need large angle to see large effect
- Depends on L/4E
- Exp. with unfortunate L/E won't see any effect.
- Exp. with variable L/E can measure both angle and mass squared difference.
- Exp. with Δm^{2} L/4E $\gg 1$ and some energy spread average over $\sin ^{2}->1 / 2$

Experimental situation

- Sources of electron neutrinos
- Sun
- Reactors
- Sources of muon neutrinos
- From charged pion beams
- From charged pion decay in atmosphere

Atmospheric neutrinos

- Expect v_{μ} anti- v_{μ} in equal numbers
- Expect v_{e} half as many as $v_{\mu}+$ anti- v_{μ}
- Can change L as a function of Zenith angle. (L ~ 15 km to $\mathrm{L} \sim 13,000 \mathrm{~km}$)
- v_{e} Oscillation to v_{μ}
=> See excess of v_{μ} vs zenith angle
- v_{μ} Oscillation to v_{e}
=> See excess of v_{e} vs zenith angle
- v_{e} Oscillation to v_{τ}
=> Deficit of v_{e} vs zenith angle
- v_{μ} Oscillation to v_{τ}
$=>$ Deficit of v_{μ} vs zenith angle

Super Kamiokande Results

Neutrinos from the Sun

- Many mechanisms, all leading to electron neutrinos with varying energies.
- Expect: $0.5 \sin ^{2}(2 \theta)$ of solar model flux convolved with energy dependent efficiency.
- Neutrino energy too low to produce either muons or taus.
- Electron disappearance experiments only in all but one experiment (SNO).

Solar Model is Quite Complex

Neutrino Energies are quite small Very Challenging Experimentally for many decades

$0.465 \pm 0.005_{-0.015}^{+0.016}$ of expectation

SNO allowed CC and NC, and was thus sensitive to all neutrino flavors => measures solar flux and electron neutrino flux.

Interpreted as

$$
\nu_{e}->v_{\mu}
$$

Reactor Experiments All except KamLAND had L that is too small! => Only KamLAND saw oscillations !!!

Interpretation

- Atmospheric must be $v_{\mu}->v_{\tau}$
- Though tau appearance has never been seen.
- However, electron appearance is ruled out.
- The state that is far in mass from the other two must have very little electron neutrino content!

Two Possible Mass Hierarchies

Normal

Inverted

Things we have not discussed yet.

- Majorana Neutrinos -> see homework
- "Size of CP violation" -> see homework
- Getting well collimated E via off-axis -> see homework
- Reactor neutrinos and sintheta13 -> see homework
- Resolving the mass hierarchy -> Wednesday.

