Physics 214 UCSD Physics 225a UCSB Experimental Particle Physics

Lecture 17
A few words about the final Attempt at a summary of the quarter.

What do we need to detect?

- Momenta of all stable particles:
- Charged: Pion, kaon, proton, electron, muon
- Neutral: photon, $\mathrm{K}_{\mathrm{s}}^{0}$, neutron, $\mathrm{K}_{\mathrm{L}}^{0}$, neutrino
- Particle identification for all of the above.
- "Unstable" particles:
- Pizero
- b-quark, c-quark, tau
- Gluon and light quarks
- W,Z,Higgs
- ... anything new we might discover ...

All modern collider detectors look alike

What you need to know:

- Exprimentalists:
- Everything we talked about !
- Theorists:
- The basic model how all collider detectors are built.

Symmetries

- Theorists:
- Need to know everything, and more.
- Experimentalists:
- Basic ideas
- How to apply them to:
- Know what transitions are allowed
- Calculate ratios of amplitudes
- Calculate angular distributions

Summary on Lie groups

- Let L be the N dimensional Lie group of Rank k for the Hamiltonian H .
- Then we have the following set of operators that mutually commute:

$$
H, C_{1}, \ldots, C_{k}, L_{1}, \ldots, L_{k}
$$

- Any state is thus characterized by 2 k quantum numbers.
- The energy E is given as some function of the $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$.

Example:

Group of Rotations in 3-space

- Generators: J_{x}, J_{y}, J_{z}
- Lie algebra: $\left[\mathrm{J}_{\mathrm{k}}, \mathrm{J}_{\mathrm{l}}\right]=\mathrm{i} \varepsilon_{\mathrm{klm}} \mathrm{J}_{\mathrm{m}}$
- Rank = 1
- Casimir Operator: J²
- Multiplets are classified by their total angular momentum J
- States are classified by J and J_{z}, the latter being one of the three generators.

Final Exam Question 3

- What's the angular distribution for the decay products in the decay $\mathrm{JPC}^{\mathrm{PC}}=1^{--}$to two pseudoscalars if the decaying particle has $J_{z}=+-1$?
\triangle Anti-B
$J_{z}=0$ in final state, therefore L must be encoded in angular distribution of B anti-B axis !!!

$$
\sigma \propto\left(\left|d_{10}^{1}\right|^{2}+\left|d_{-10}^{1}\right|^{2}\right) \propto \sin ^{2} \theta
$$

Final Exam Question 8

- Most of you got some fraction of this right.
- Almost everybody missed the fact that there are two reduced matrix elements in play, and that you need to do an isospin decomposition after adding the isospin of the B meson and the isospin of the transition operator $\mathrm{H}_{\text {effective }}$!!!

Neutrino Physics

- The basic Phenomenology
- There are 3 families of neutrinos
- They are produced and observed in their weak eigenstates but propagate in their mass eigenstates => mixing
- What we know from experiment
- The research frontier
- Measuring sin(theta13)
- Understand hierarchy
- Majorana vs Dirac

Discussion of QFT and scattering of point particles

- From Feynman Diagrams to Matrix elements.
- You need to come up with the diagram for a process (e.g. Q6 of final)
- You need to write down the ME
- Relationship between ME, cross section, and physical observable.
- Understand basic characteristics to know when you've screwed up royally.
- Theorists need to actually master the algebra.

"Rules" for dealing with antiparticles

- Antiparticles get arrow that is backwards in time.
- "Incoming" and "outgoing" is defined by how the arrows point to the vertex.
- Antiparticles get negative energy assigned.

Two-by-two process

- Understand how to relate number of scatters in $A B->C D$ scattering to "beam \& target independent" cross section in terms of $\mathrm{W}_{\text {fi }}$.
- Relate W_{fi} to matrix element.
=> Understand relationship between cross section and Matrix Element", and be able to relate it to physical observable.

Cross Section for AB -> CD

- Basic ideas:
target

\# of scatters $=($ flux of beam $) \times(\#$ of particles in target $) \times \sigma$
Cross section $=\sigma=\frac{W_{\mathrm{fi}}}{\text { (initial flux) }}$ (number of final states)
$\mathrm{W}_{\mathrm{fi}}=$ rate per unit time and volume
"Cross section" is independent of characteristics of beam and target !!!

Experimental perspective

- We measure event yield within some ragged kinematic corner of phase space.
- We divide by our detector acceptance
=> We get produced yield for well defined corner of phase space.
- We measure integrated luminosity of the colliding beams for our data taking period.
=> $\sigma=$ produced yield / integrated luminosity

Theoretical perspective

Cross section $=\sigma=\frac{\mathrm{W}_{\mathrm{fi}}}{\text { (initial flux) }}$ (number of final states)

$$
\begin{gathered}
\sigma=\frac{\mathrm{W}_{\mathrm{fi}}}{\mathrm{v}_{\mathrm{A}}\left(2 \mathrm{E}_{\mathrm{A}} / \mathrm{V}\right)\left(2 \mathrm{E}_{\mathrm{B}} / \mathrm{V}\right)} \frac{V d p_{C}^{3}}{(2 \pi)^{3} 2 E_{C}} \frac{V d p_{D}^{3}}{(2 \pi)^{3} 2 E_{D}} \\
W_{f i}=(2 \pi)^{4} \frac{\delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right)}{V^{4}}|M|^{2}
\end{gathered}
$$

M is obtained from Feynman rules, and the rest is algebra.

It is customery to re-express

$$
d \sigma=\frac{|M|^{2}}{F} d Q
$$

$\mathrm{F}=$ flux factor: $\quad F=4 \sqrt{\left(p_{A}^{\mu} p_{\mu}^{B}\right)^{2}-m_{A}^{2} m_{B}^{2}}$
$d Q=$ Lorentz invariant phase space:

$$
d Q=\frac{1}{16 \pi^{2}} \delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right) \frac{d p_{c}^{3} d p_{D}^{3}}{E_{c} E_{D}}
$$

e+e- -> f+ f-

- Question 1 on final is probably the most important example process to understand.
- I promise to revisit this next quarter, and discuss it in some detail then.

$$
\left.\mathrm{p}_{\mathrm{f}} \sim \mathrm{p}_{\mathrm{i}} \quad \Rightarrow \quad \frac{d \sigma}{d \Omega}\right|_{c m} \approx \frac{|M|^{2}}{64 \pi^{2} s}
$$

$$
t=-2 k^{2}(1-\cos \theta)
$$

$$
\begin{aligned}
& \mathrm{u}=-2 \mathrm{k}^{2}(1+\cos \theta) \quad \Rightarrow \quad \overline{|M|^{2}}=2 e^{4} \frac{8 k^{4}\left(1+\cos ^{2} \theta\right)}{16 k^{4}}, ~ \\
& \mathrm{~s} \sim 4 \mathrm{k}^{2}
\end{aligned}
$$

$$
\alpha=e^{2} / 4 \pi
$$

$$
\left.\frac{d \sigma}{d \Omega}\right|_{c m} \approx \frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right)
$$

Relativistic limit

$$
\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right) \approx \frac{4 \pi \alpha^{2}}{3 s}
$$

- $\mathrm{e}_{\mathrm{L}}^{-} \mathrm{e}_{\mathrm{R}}{ }^{+}->\mathrm{mu}_{\mathrm{L}}^{-} \mathrm{mu}_{\mathrm{R}}{ }^{+} \quad \mathrm{J}_{\mathrm{z}}+1->+1$
- $\mathrm{e}_{\mathrm{L}}{ }^{-} \mathrm{e}_{\mathrm{R}}{ }^{+}->\mathrm{mu}_{\mathrm{R}}{ }^{-} \mathrm{mu}_{\mathrm{L}}{ }^{+} \quad \mathrm{J}_{\mathrm{z}}+1->-1$
- $\mathrm{e}_{\mathrm{R}}{ }^{-} \mathrm{e}_{\mathrm{L}}{ }^{+}->\mathrm{mu}_{\mathrm{L}}{ }^{-} \mathrm{mu}_{\mathrm{R}}{ }^{+} \quad \mathrm{J}_{\mathrm{z}}-1 \quad->+1$
- $\mathrm{e}_{\mathrm{R}}{ }^{-} \mathrm{e}_{\mathrm{L}}{ }^{+}->\mathrm{mu}_{\mathrm{R}}{ }^{-} \mathrm{mu}_{\mathrm{L}}{ }^{+} \quad \mathrm{J}_{\mathrm{z}}-1 \quad->-1$
- Next look at the rotation matrices:
$d_{11}^{1}(\theta)=\frac{1}{2}(1+\cos \theta) \approx \frac{-u}{s}$
$d_{-1-1}^{1}(\theta)=\frac{1}{2}(1+\cos \theta) \approx \frac{-u}{s}$
$d_{-11}^{1}(\theta)=\frac{1}{2}(1-\cos \theta) \approx \frac{-t}{s}$
$d_{1-1}^{1}(\theta)=\frac{1}{2}(1-\cos \theta) \approx \frac{-t}{s}$
Cross products cancel in Spin average:

$$
\overline{|M|^{2}} \propto\left(1+\cos ^{2} \theta\right)
$$

d^{J}
initial final J_{z}

QED piece goes like $1 / E^{2}=>-2 \log E$ on log scale. Weak piece must have a Z-pole.

Forward-backward asymmetry

Must start at 0 because of $1+\cos ^{2}$ dependence.
For dependence look at Eq. 13.66 and 13.61 in H\&M.

It goes negative like -s as s increases from 0.
It reaches a minimum t a place that's not immediatey obvious.
It goes asymptotically towards a positive value.

Deep Inelastic Scattering

- Bjorken Scaling is a sign of point particles inside the proton.
- The parton picture, and pdf's that describe the structure of the proton
- At what x do valence quarks dominate
- At what x do sea quarks dominate
- At what x do gluons dominate
- How do I use this information to gain some intuition about proton proton and proton antiproton collisions as a function of sqrt(s).

PDFs from http://durpdg.dur.ac.uk/hepdata/pdf3.html

A 14 TeV collider can be pp instead ơf ppbar because all Standard model processes involve low x at that s !!!

Gluons dominate at low x.
To set the scale, $x=0.14$ at LHC is $0.14 * 7 \mathrm{TeV}=1 \mathrm{TeV}$
=> The LHC is a gluon collider !!!

simplistic rule of thumb:

- For 1 TeV gg processes, $1 \mathrm{fb}{ }^{-1}$ at FNAL is like $1 \mathrm{nb}^{-1}$ at LHC
- For 1 TeV qq processes, $1 \mathrm{fb}^{-1}$ at FNAL is like $1 \mathrm{pb}^{-1}$ at LHC

Cross sections at

 1.96 TeV versus 14 TeV Tevatron vs LHC| | Cross section | | Ratio |
| :--- | :--- | :--- | :--- |
| $Z \rightarrow \mu \mu$ | 260 pb | 1750 pb | 6.7 |
| WW | 10 pb | 100 pb | 10 |
| $\mathrm{H}_{160 \mathrm{GeV}}$ | 0.2 pb | 25 pb | 125 |
| mSugra $_{\text {LM } 1}$ | 0.0006 pb | 50 pb | 80,000 |

At $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{CMS}$ might accumulate $10 \mathrm{pb}^{-1}$ in one day!
\ldots and SUSY might not exist in nature.

In case you want to prepare for next quarter during the break.

Make yourself comfortable with question 1 on final.
Play around a bit with comphep, madgraph, etc.

Have a great holiday!

And see you all back in the new year in the continuation of this lecture.

