## Physics 214 UCSD/225a UCSB

## Lecture 13

- Schedule for remaining Quarter
- Finish H\&M Chapter 6
- Start H\&M Chapter 8


## Schedule for remaining Quarter

- Week of 11/26-11/30
- Mo lecture
- Tuesday 2-4pm Seminars
- We lecture
- Thursday 2-4pm Seminars
- Thursday 6pm start of take-home final
- Week of 12/3-12/7
- Mo lecture: hand-in take home final before lecture.
- We lecture
- Quarter Finished
- Week of 12/10-12/14
- You get your grades before the week is over.


## Propagators

Spinless:

$$
\overline{p^{2}-m^{2}}
$$

Massive Vector Bosons:

See H\&M Ch.6.10ff for more details.

$$
\frac{i\left(-g^{\mu v}+p^{\mu} p^{v} / M^{2}\right)}{p^{2}-M^{2}}
$$

Spin 1/2, e.g. electron:
$\frac{i \sum_{s} \bar{u} u}{p^{2}-m^{2}}=\frac{i\left(p^{\mu} \gamma_{\mu}+m\right)}{p^{2}-m^{2}}$
Photon: $\frac{-i g_{\mu \nu}}{q^{2}}$

Compton Scattering: e- gamma -> e- gamma


Compton Scattering: e- gamma -> e- gamma


Where we neglect the electron mass, and refer to H\&M Chapter 6.14 for details.

## Piar annihilation via crossing

- Like we've done before: u <-> t

$$
\overline{|M|^{2}}=\overline{\left|M_{1}+M_{2}\right|^{2}}=2 e^{4}\left(-\frac{t}{s}-\frac{s}{t}\right)
$$

$$
\mathrm{t}=-2 \mathrm{kk}=-2 \mathrm{pp}{ }^{\prime}
$$

$$
u=-2 k p^{\prime}=-2 k^{\prime} p
$$

Ignoring the electron mass.

## First step towards chapter 8

- In chapter 8 we investigate the structure of hadrons by scattering electrons of charge distributions that are at rest in the lab.
- As an initial start to formalism review e- muscattering with the initial muon at rest.
- Let's start with what we got last time, neglecting only terms with electron mass:

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{t^{2}}\left[\left(k^{\prime} p^{\prime}\right)(k p)+\left(k^{\prime} p\right)\left(k p^{\prime}\right)-M^{2} k k^{\prime}\right]
$$

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{t^{2}}\left[\left(k^{\prime} p^{\prime}\right)(k p)+\left(k^{\prime} p\right)\left(k p^{\prime}\right)-M^{2} k k^{\prime}\right]
$$

As we will want frame for which $p=(M, 0)$, it's worth rewriting this using $\mathrm{q}=\mathrm{k}-\mathrm{k}$.
As we won't care for the muon recoil p', we eliminate p' via:
$\mathrm{p}^{\prime}=\mathrm{k}-\mathrm{k}^{\prime}+\mathrm{p}$.
As we ignore the electron mass, we'll drop terms with $k^{2}$, or $k^{\prime 2}$, and simplify $q^{2}=-2 k k^{\prime}$.
We then get:

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{q^{4}}\left[-\frac{1}{2} q^{2}\left(k p-k^{\prime} p\right)+2\left(k^{\prime} p\right)(k p)+\frac{1}{2} M^{2} q^{2}\right]
$$

I'll let you confirm this for yourself.

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{q^{4}}\left[-\frac{1}{2} q^{2}\left(k p-k^{\prime} p\right)+2\left(k^{\prime} p\right)(k p)+\frac{1}{2} M^{2} q^{2}\right]
$$

Now got to muon restframe: $p=(M, 0)$ This means $\mathrm{kp}=\mathrm{EM}$ and $\mathrm{k} \mathrm{p}=\mathrm{E}^{\prime} \mathrm{M}$.

$$
\begin{aligned}
& \left\lvert\, \overline{|M|^{2}}=\frac{8 e^{4}}{q^{4}}\left[-\frac{1}{2} q^{2} M\left(E-E^{\prime}\right)+2 E E^{\prime} M^{2}+\frac{1}{2} M^{2} q^{2}\right]\right. \\
& =\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[-\frac{q^{2}}{2 M^{2}} \frac{M\left(E-E^{\prime}\right)}{2 E E^{\prime}}+1+\frac{q^{2}}{4 E E^{\prime}}\right] \\
& =\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[-\frac{q^{2}}{2 M^{2}} \frac{M\left(E-E^{\prime}\right)}{2 E E^{\prime}}+1-\sin ^{2} \frac{\theta}{2}\right] \\
& =\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]
\end{aligned}
$$

$$
q^{2}=-2 k k^{\prime}=-4 E E^{\prime} \sin ^{2} \theta / 2
$$

$$
q^{2}=-2 p q=-2 M\left(E-E^{\prime}\right)
$$

$$
\overline{|M|^{2}}=\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]
$$

Now recall how to turn this into do in the labframe:

$$
\begin{aligned}
& d \sigma=\frac{1}{64 \pi^{2}} \frac{\delta^{(4)}\left(p_{D}+p_{C}-p_{A}-p_{B}\right)}{V_{A} E_{A} E_{B}}|M|^{2} \frac{d p_{c}^{3} d p_{D}^{3}}{E_{c} E_{D}} \\
& =1 \text { (slide } 15 \text { lecture 10) } \\
& d \sigma=\frac{1}{64 \pi^{2}} \frac{\delta^{(4)}\left(p+k-p^{\prime}-k^{\prime}\right)}{E M}|M|^{2} \frac{d^{3} k^{\prime} d^{3} p^{\prime}}{E^{\prime} p_{0}^{\prime}} \\
& =\frac{|M|^{2}}{4 \pi^{2}} \frac{\delta^{(4)}\left(p+k-p^{\prime}-k^{\prime}\right)}{4 E M} \frac{E^{\prime} d E^{\prime} d \Omega}{2} \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}}
\end{aligned}
$$

$$
d \sigma=\frac{|M|^{2}}{4 \pi^{2}} \frac{\delta^{(4)}\left(p+k-p^{\prime}-k^{\prime}\right)}{4 E M} \frac{E^{\prime} d^{3} E^{\prime} d \Omega}{2} \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}}
$$

## What do we do about this?

Recall, we are heading towards collissions between electron and hadron. The hadronic mess in the final state is not something we care to integrate over !!!

Exercise 6.7 in H\&M:

$$
\int \delta^{(4)}\left(p+q-p^{\prime}\right) \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}}=\frac{1}{2 M} \delta\left(E-E^{\prime}+\frac{q^{2}}{2 M}\right)
$$

## Putting it all together:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{\begin{array}{l}
\frac{d \sigma}{d E^{\prime} d \Omega}=\frac{|M|^{2}}{4 \pi^{2}} \frac{E^{\prime}}{8 E M} \int \delta^{(4)}\left(p+q-p^{\prime}\right) \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}} \\
\overline{|M|^{2}}=\frac{8 e^{4}}{q^{4}} 2 E E^{\prime} M^{2}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]
\end{array}\right. \\
\underbrace{d \sigma}_{d E^{\prime} d \Omega}=4 \alpha^{2} \frac{2 M E^{\prime 2}}{q^{4}}[\cdots] \int \delta^{(4)}\left(p+q-p^{\prime}\right) \frac{d^{3} p^{\prime}}{2 p_{0}^{\prime}}
\end{array}\right. \\
& \frac{d \sigma}{d E^{\prime} d \Omega}=\frac{4 E^{\prime 2} \alpha^{2}}{q^{4}}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right] \delta\left(E-E^{\prime}+\frac{q^{2}}{2 M}\right)
\end{aligned}
$$

Now we perform the E' integration by noticing:

$$
\begin{aligned}
& \frac{1}{2 M} \delta\left(E-E^{\prime}+\frac{q^{2}}{2 M}\right)=\frac{\delta\left(E^{\prime}-E / A\right)}{2 M A} \\
& A \equiv 1+\frac{2 E}{M} \sin ^{2} \frac{\theta}{2} \quad \text { Exercise 6.7 H\&M }
\end{aligned}
$$

We then finally get:

$$
\left.\frac{d \sigma}{d \Omega}\right|_{l a b}=\frac{4 \alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{\prime}}{E}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]
$$

This is completely independent of the target's final state !!!

## Experimental importance

- You measure only initial and final state electron.
- You have a prediction for electron scattering off a spin $1 / 2$ point particle with charge $=-1$.
- Any deviation between measurement and prediction indicates substructure of your supposed point particle !!!
- Next: How does one describe scattering off a charge distribution, rather than a point particle?
=> Beginning of chapter 8 !


## Probing the Structure of Hadrons with electron scattering



- All you measure is the incoming and outgoing electron 3 momentum.
- If you had a static target then you can show that this gives you directly the fourier transform of the charge distribution of your target:

Once the target is not static,
we're best of using e-mu
scattering as our starting point.

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\left.\frac{d \sigma}{d \Omega}\right|_{p o \text { int }} \bullet|F(q)|^{2} \\
& F(q)=\int \rho(x) e^{i q x} d^{3} x
\end{aligned}
$$

## e-proton vs e-muon scattering

- What's different?
- If proton was a spin $1 / 2$ point particle with magnetic moment e/2M then all one needs to do is plug in the proton mass instead of muon mass into:

$$
\left.\frac{d \sigma}{d \Omega}\right|_{l a b}=\frac{4 \alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{\prime}}{E}\left[\cos ^{2} \frac{\theta}{2}-\frac{q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right]
$$

- However, magnetic moment differs, and we don't have a point particle !!!


## e-proton vs e-muon scattering

- Let's go back to where we started:
- What's the transition current for the proton?

$$
\begin{array}{rlr}
J^{\mu} & =-e \bar{u}\left(k^{\prime}\right) \gamma^{\mu} u(k) e^{i\left(k^{\prime}-k\right) x} & \text { electron } \\
J^{\mu} & =-e \bar{u}\left(p^{\prime}\right)[? ? ?] u(p) e^{i\left(p^{\prime}-p\right) x} & \text { proton }
\end{array}
$$

We need to find the most general parametrization for [???], and then measure its parameters.

## What is [???]

- This is a two part problem:
- What are the allowed 4 -vectors in the current?
- What are the independent scalars that the dynamics can depend on ?
- Let's answer the second first:

$$
M^{2}=p^{\prime 2}=(p+q)^{2}=M^{2}+2 p q+q^{2}
$$

- I can thus pick either $p q$ or $q^{2}$ as my scalar variable to express dependence on kinematics.


## What's are the 4 -vectors allowed?

- Most general form of the current:

$$
\begin{aligned}
& J^{u}=-e \bar{u}\left(p^{\prime}\right)[? ? ?] u(p) e^{i\left(p^{\prime}-p\right) x} \\
& {[? ? ?]=\gamma^{\mu} K_{1}+i \sigma^{u v}\left(p^{\prime}-p\right)_{v} K_{2}+i \sigma^{\mu v}\left(p^{\prime}+p\right)_{v} K_{3}+} \\
& +\left(p^{\prime}-p\right)^{u} K_{4}+\left(p^{\prime}+p\right)^{u} K_{5}
\end{aligned}
$$

- Gordon Decomposition of the current: any term with ( $p+p^{\prime}$ ) can be expressed as linear sum of components with $\gamma^{\mu}$ and $\sigma^{\mu \nu}\left(p^{\prime}-p\right)$.
- $\mathrm{K}_{4}$ must be zero because of current conservation.


## Gordon Decomposition

- Exercise 6.1 in H\&M:

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left[\left(p^{\prime}+p\right)+i \sigma^{u v}\left(p^{\prime}-p\right)_{v}\right] u(p)
$$

- I leave it as a future homework to show this.


## Current Conservation

$$
\begin{aligned}
& q_{\mu} J^{\mu}=0 \\
& 0=q_{\mu} \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} K_{1}+i \sigma^{\mu \nu}\left(p^{\prime}-p\right)_{v} K_{2}+\left(p^{\prime}+p\right)^{\mu} K_{5}\right] u(p) \\
& q_{\mu} \gamma^{\mu} \psi=m \psi \approx 0 \quad \text { because of relativistic limit. } \\
& q_{\mu} \sigma^{\mu \nu} q_{v}=0 \quad \text { because sigma is anti-symmetric. }
\end{aligned}
$$

As a result, $\mathrm{K}_{5}$ must be zero.

$$
J^{\mu}=-e \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+i \sigma^{\mu v} q_{v} \frac{\kappa}{2 M} F_{2}\left(q^{2}\right)\right] u(p) e^{i\left(p^{\prime}-p\right) x}
$$

## Proton Current

$$
J^{\mu}=-e \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+i \sigma^{\mu v} q_{v} \frac{\kappa}{2 M} F_{2}\left(q^{2}\right)\right] u(p) e^{i\left(p^{\prime}-p\right) x}
$$

We determine F1, F2, and kappa experimentally, with the constraint that $F 1(0)=1=F 2(0)$ in order for kappa to have the meaning of the anomalous magnetic moment.

The two form factors F1 and F2 parametrize our ignorance regarding the detailed structure of the proton.

