Problem Set 2.

Problem 6.

Explain why it is that x-ray scattering is seldom used for the measurement of phonon spectra. What kind of information related to lattice vibrations can be extracted from x-ray diffraction.

See Ashcroft & Mermin, Chapter 24.

Problem 7.

Consider a linear chain with nearest neighbor interactions in which alternate ions have masses M_1 and M_2 .

- a) Calculate the dispersion relation for normal modes.
- b) Discuss the form of the dispersion relation and the nature of the normal modes for $M_1 >> M_2$.
- c) Do the same for $M_1 = M_2$. How can you reconcile this with what we did in class?

Problem 8.

Calculate the density of states for a one dimensional harmonic chain with nearest neighbor interactions.

- a) The singularity you find is a van Hove singularity.
- b) In three dimensions, the Van Hove singularities are in the derivatives.

Show that if $\omega = \omega(k)$ has a maximum, the derivative of the density of states exhibits a singularity.

Problem 9.

Assume that the total internal energy for a gas of electrons is

$$U = U_o + \frac{\pi^2}{6} (kT)^2 N(\varepsilon_F)$$

Where N (ϵ_F) is the density of states for conduction electrons at energy ϵ_F , ϵ_F is the maximum energy allowed for electrons.

- a) Calculate the specific heat.
- b) Assume that the total number of conduction electrons is n.

Discuss why is it that at room temperature one can neglect the contribution of electrons to the specific heat of a solid.