6.1 Diffraction

Diffraction grating
Single slit diffraction
Circular diffraction

Diffraction and Interference

- Diffraction and interference are similar phenomena.
- Interference is the effect of superposition of 2 coherent waves.
- Diffraction is the superposition of many coherent waves.

Diffraction grating

- Consists of a flat barrier which contains many parallel slits separated by a short distance d.
- A parallel monochromatic light beam passing through the grating is diffracted by an angle θ
$d \sin \theta=m \lambda$
similar to two slit interference.

However, the intensity of the diffracted light is higher and the peaks are much narrower.

Question

A grating in a spectrometer has a length of 2 cm and has contains 10^{4} lines. Find the first order diffraction angle for light with a wavelength of 500 nm .

Single slit diffraction

- Assume Fraunhoffer diffraction conditions

Rays leaving the slit are parallel.

- This is true
- if the screen is far from the slit
- if a lens is used to focus rays from the slit on a screen at the

Single slit diffraction

Huygens principle - Each point in the wave in the slit acts as a source of spherical waves.
sum the waves with different phases
focal distance from the lens.

Single slit diffraction

For the second minimum.
Divide the slit into
4 sections

Circular diffraction

Waves passing through a circular hole forms a a circular diffraction pattern.

Circular diffraction limits the minimum size do the spot that can be formed by a lens.

Circular diffraction limits the minimum size do the spot that can be formed by a lens.

parallel rays from a point at infinity
has a diffraction pattern with a width of $\theta_{\text {min }}$

Example

A camera lens with an f - number (f / D) equal to 1.4 is used to focus light from a distant source. What is the diffraction limited diameter of the spot that can be formed for 500 nm light?

Rayleigh criterion

For resolution of two object by a circular lens of diameter D the diffraction limit of resolution occurs when the image of the second object is at position of the first minimum of the diffraction pattern of the first object.

Resolution limit of the eye

Two light sources ($\lambda=500 \mathrm{~nm}$) are separated vertically by 2.0 mm . How far away can these objects be resolved by the eye Assume a diameter of the pupil of $2.0 \mathrm{~mm} . \mathrm{n}_{\text {water }}=1.33$

