4.2 Lenses

Images formed by refraction
Images formed by a thin lens

Image formed by refraction

- Light rays are deflected by refraction through media with different refractive indexes.
- An image is formed by refraction across flat or curved interfaces and by passage through lenses.

Image formed by refraction through a refracting surface.

Image formed by refraction through a refracting surface.

Light is caused to diverge in a different direction.

Ray tracing for lenses

- A line parallel to the lens axis passes through the focal point
- A line through the center of the lens passes through undeflected.

Parallel light though a converging lens is focused at the focal point.

> A real image is formed

Ray diagram for a converging

 lenses

Question

How will an object viewed through a converging lens appear as the lens is brought closer to the object?

A virtual image is formed.

Question

How will the image of an object formed by a diverging lens change as the lens is brought closer to the object?

Thin lens equation.

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{f}
$$

p and q are positive if light passes through p is positive for real objects f is positive for converging lenses f is negative for diverging lenses q is positive for real images q is negative for virtual images.

Example

An object is placed 30 cm in front of a converging lens with focal length 10 cm . Find the object distance and magnification.

Example

An object is placed 30 cm in front of a diverging lens with a focal length of -10 cm . Find the image distance and magnification

Lens aberrations

- Aberrations prevent the formation of a perfect image and limit the magnification of a lens or mirror
- Spherical Aberration- due to deviation of spherical surface from the ideal parabolic shape.
- Chromatic aberration - due to the difference in refractive index and thus the focal length for different wavelengths of light.

Spherical aberration

Chromatic aberration

