

Object-Image

- A physical object is usually observed by reflected light that diverges from the object.
- An optical system (mirrors or lenses) can produce an image of the object by redirecting the light.
- Real Image
- Virtual Image

Image formed by a plane mirror.

Each point on the image can be determined by tracing 2 rays from the object.

A virtual image is formed by a plane mirror at a distance q behind the mirror.

$$
q=-p
$$

Parabolic Mirrors

Parallel rays reflected by a parabolic mirror are focused at a point, called the Focal Point located on the optic axis.

Spherical mirrors

- Spherical mirrors can be used to form images
- Spherical mirrors are much easier to fabricate than parabolic mirrors
- A spherical mirror is an approximation of a parabolic mirror for small curvatures. (i.e. for paraxial rays -close to parallel to the optic axis.
- Spherical mirrors can be convex or concave
light
$)$

concave
convex

Parallel beams focus at the focal point of
Ray tracing with a concave spherical mirrors a Concave Mirror.

- A ray parallel to the mirror axis reflects through the focal point, \mathbf{F} which is at a point half the radius distance from the mirror along the optic axis. $F=R / 2$
- A ray passing through the focal point reflects parallel to the mirror axis
- A ray striking the center of the mirror reflects symmetrically around the
mirror axis
- A ray that passes through the center of curvature \mathbf{C} reflects and passes
back through itself

The position of the image can be determined from two rays from the object.

When object distance $>\mathrm{C}, \mathrm{F}$
The image is real, inverted, reduced

Why does the image goes from a real image to a virtual image when the object passes through the focal point?

Why does the image goes from a real image to a virtual image when the object passes
through the focal point?

Question

What image of yourself do you see when you move toward a concave mirror?

Question

Describe how your image would appear as you approach a convex mirror?

Mirror equation. Special cases

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{f}
$$

When $\mathrm{f}>0$ concave mirror

$$
p=\text { inf inity } \quad q=f \quad \text { Real Image }
$$

$$
p=2 f \quad q=2 f
$$

$p=f$
$q=$ infinity

Question

A boy stands 2.0 m in front of a concave mirror with a focal length of 0.50 m . Find the position of the image. Find the magnification. Is the image real or virtual? Is the image inverted or erect?

Sign Conventions for Mirrors

TABLE 23.1					
Sign Conventions for Mirrors					
Quantity	Symbol	In Front	In Back	Upright Image	Inverted Image
Object location	p	+	-		
Image location	q	+	-		
Focal Length	f	+	-		
Image height	h^{\prime}			+	-
Magnification	M			+	-

