2.1 Standing Waves

Interference of sound waves Standing waves (waves on a string) Forced vibrations /Resonance Standing waves in air columns.

Determining the wavelength of a sound wave – determine the speed of sound

•How does the sound amplitude vary as the path-length difference is varied?

•How can the wavelength be determined?

•How can you determine the speed of sound if the frequency is known?

Standing Wave

- A standing wave is generated by a traveling wave superimposed on the wave reflected from a boundary.
- Standing waves have a pattern of nodes and anti-nodes.
- The positions of the nodes and anti-nodes are stationary.

Example 14.8 Second part.

Find the wavelength of the sound in air produced at the fundamental frequency. v=345 m/s How is the wavelength of the sound in air related to the wavelength of the standing wave on the string?

Third part

Suppose the tension in the wire was increased by a factor of 2 . How would the frequency of the fundamental change.

• The pattern of frequencies for an air column open at one end and closed at one end is different.

Resonance

When the driving oscillations has a frequency that matches the oscillation frequency of the standing waves in the system then a large amount of energy can be put into the system.

