

Course Information

Course Syllabus on the web page http://physics.ucsd.edu/ students/courses/fall2007/physics1c

Instructor: Mel Okamura - mokamura@physics.ucsd.edu
Office: 1218 Mayer Hall
Office Hrs. Wed, Thu 2-3 pm or by appointment
TA: Mariano Gabitto - mgabitto@physics.ucsd.edu
Office: TBA
Office Hrs: TBA
Text. Physics 1 Serway and Faughn, $7^{\text {th }}$ edition, UCSD custom edition.

Class Schedule

- Lectures
- Mon. Wed. Fri. 12:00-12:50 pm WLH 2001
- Quizzes
- Alternate Fri. 12:00-12:50 pm WLH 2001
- Problem Session
- Thu. 5:00-6:50 pm WLH 2005

Grades

- Bi-weekly quizzes (4) will be held on Friday. You are allowed to drop 1 quizzes. There will be no make-up quizzes.
- Final exam covering the whole course.
- The final grade will be based on

Quizzes 60\% (best 3 out of 4 quizzes)
Final exam 40\%
Extra credit 5\% (clicker responses)

Homework

- Homework will be assigned each week.
- Homework will not be corrected but quiz questions will resemble the homework.
- Solutions to the homework problems will be posted on the web page.

H-ITT Clicker

Available at the bookstore Clickers must be registered at http://clickers.ucsd.edu The ID number is in the battery compartment.

Outline

- weeks 1-2 Oscillations and Waves
- weeks 3-4 Electromagnetic waves and light
- weeks 5-6 Optics
- weeks 7-10 Modern Physics

1.1 Oscillations

- Kinematics - sinusoidal waves
- Dynamics -Newton's law and Hooke's law.
- Energetics - Conservation of Energy
- Mass on a spring
- Pendulum

Oscillations

- repetitive displacements with a time period
- provide the basis for measuring time
- serve as the starting point for describing wave motion.
- Example- Mass on a spring

Mass on a spring

Hooke's Law -Force exerted by spring is proportional to the displacement from the equilibrium position.

$$
\vec{F}=-k \vec{x}
$$

k - Force constant
Units N/m

Vertical direction

The force of gravity is cancelled by the stretch d. The equilibrium position is at the position of the stretched spring.

What is the force on the object when it is displaced upward by a distance y from the equilibrium position?

$$
\vec{F}_{y}=-k \vec{y}
$$

The restoring force is only due to the spring.

Demo

Oscillations of mass on a spring.

How does the displacement vary with time?

relation between oscillation frequency, force constant and mass.

Motion model with a sinusoidal function

The projection of the vector A on the x axis gives

$$
x=A \cos \left(\frac{2 \pi}{T} t\right)=A \cos (2 \pi f t)=A \cos (\omega t)
$$

This function is periodic.
i.e. Maxima occur at $\mathrm{t}=0, \mathrm{~T}, 2 \mathrm{~T}, 3 \mathrm{~T} . \ldots \ldots . . .=\mathrm{nT}$ where n is an integer.

| Newton's Law | Hooke's Law | $=m a$ |
| ---: | :--- | ---: | :--- |
| F | $=-k x$ | |
| $m a$ | $=-k x$ | |

for harmonic motion $\quad m\left(-\omega^{2} A \cos \omega t\right)=-k A \cos \omega t$
canceling gives
$\omega^{2}=\frac{k}{m}$

[^0]$$
\frac{1}{\mathrm{~T}}=\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}}
$$
cycles/s (Hz)

The acceleration is proportional to - displacement.
Newtons Law and Hooke's Laws are obeyed ma=-kx
This is the reason that the displacement is sinusoidal!!!
displacement, velocity, acceleration

$$
\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}
$$

$a=\frac{d v}{d t}$

Demo

How does the period of oscillation depend on mass, on the force constant?

Calculate the period for the mass spring system.

Pendulum

The restoring force is proportional to the displacement
for small displacements.

$$
\begin{aligned}
& F=-m g \sin \theta \\
& F=-m g \theta \text { for small } \theta \\
& F=-\frac{m g}{L} s
\end{aligned}
$$

Hookes Law with $k=m g / L$
$\omega=\sqrt{\frac{g}{L}} \quad T=2 \pi \sqrt{\frac{L}{g}} \quad \begin{aligned} & \text { The period is dependent on } L \\ & \text { but independent of } m\end{aligned}$

Energy

Energy required to stretch (compress) a spring by a displacement x

Note the energy depends on x^{2} so it is independent of the sign of x, i.e. same for compression and stretch.

Demo

Pendulum oscillations.

How does the period depend on L ?

[^0]: $\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \quad$ radians $/ \mathrm{s}$

