PHYSICS 1B - Fall 2007

Electricity

 \& Magnetism

Wednesday October 3, 2007
Course Week 1
Professor Brian Keating
SERF Building. Room 333

Today

- No Problem Session Tomorrow.
- First problem session will be next Thursday night.
- Jon, the TA has office hours today.
- Lecture notes for lecture 1 and 2 on web. Lectures will be posted a within a few days after each class, but never before lecture.
- Finish electric forces and Electric fields

Example

$1 \mathrm{~cm}{ }^{3}$
copper spheres

Removal of one valence electron out of 5.7×10^{12} would provide enough net charge to lift the top sphere, overcoming the gravity of the entire Earth.
-Let's examine the amount of charge in a sphere of copper of volume one cubic centimeter.
-Cu has one valence electron outside of closed shells in its atom, and that electron is free to move.
-The density of metallic $\mathrm{Cu}=9 \mathrm{~g} / \mathrm{cm}^{3}$ and one mole of $\mathrm{Cu}=63.5$ grams so the cubic centimeter of $\mathrm{Cu}=1 / 7$ th of a mole or about $8.5 \times 10^{22} \mathrm{Cu}$ atoms.
-With one mobile electron per atom, and with the electron charge of $1.6 \times 10^{-19} \mathrm{C}$, so there are $\sim 13,600 \mathrm{C} / \mathrm{cm}^{3}$.

- Suppose we remove enough of the electrons from two spheres of Cu so that there is enough net positive charge on them to suspend one of them over the other. What fraction of the electron charge must we remove?
-The force to lift one of the spheres of copper would be its weight, 0.088 N .
-Radius of a $1 \mathrm{~cm}^{3}=0.62 \mathrm{~cm}$, separation= 2.48 cm Using Coulomb's law, this requires a charge of 7.8×10^{-8} Coulombs.
-This amounts to removing just one valence electron out of every 5.7×10^{12} from each copper sphere.

Two charges are in a line. $q_{1}=-1 \mu C, q_{2}=2 \mu C$ Is there a position along the line through the centers where the force on $\mathrm{a}+$ charge, q_{3} is zero?

A. Yes
B. No

Three charges are placed a the corners of a square with the length of each side $=2.0 \mathrm{~cm}$. Find the force on $q 3$. $q 3=-2 \times 10^{-6} \mathrm{C} \quad q 1=q 2=1 \times 10^{-6} \mathrm{C}$

Forces acting on q3

$$
\begin{gathered}
\mathrm{F}_{13}= \\
\mathrm{F}_{23}= \\
\mathrm{F}_{3}=
\end{gathered}
$$

$$
\begin{array}{ll}
r_{23}^{2}=r_{13}^{2}+r_{12}^{2} & F_{13}=\frac{k_{e} q_{1} q_{3}}{r_{13}^{2}}=\frac{9 \times 10^{9}\left(10^{-6}\right)\left(2 \times 10^{-6}\right)}{\left(2 \times 10^{-2}\right)^{2}}=45 \mathrm{~N} \\
r_{23}^{2}=2 r_{13}^{2} & F_{23}=\frac{k_{e} q_{2} q_{3}}{r_{23}^{2}}=\frac{9 \times 10^{9}\left(10^{-6}\right)\left(2 \times 10^{-6}\right)}{2\left(2 \times 10^{-2}\right)^{2}}=22.5 \mathrm{~N} \\
r_{0}=\sqrt{2} r_{1} &
\end{array}
$$

Solve
Find x and y components.
Consider only the relative magnitudes Ignore the minus sign

$$
\begin{aligned}
& F_{3} \quad F_{23}=22.5 \mathrm{~N} \\
& F_{3}=\sqrt{F_{3 x}^{2}+F_{3 y}^{2}} \\
& F_{3 x}=45+22.5(\cos 45)=61 \mathrm{~N} \\
& F_{3 y}=22.5(\sin 45)=16 \mathrm{~N} \\
& F_{3}=\sqrt{61^{2}+16^{2}}=63 \mathrm{~N}
\end{aligned}
$$

Example 15.3 Where is the resultant force zero?
Two charges are in a line

$$
q_{1}=15 \mu \mathrm{C}, q_{2}=6 \cdot 0 \mu \mathrm{C} .
$$

A negative charge q_{3} must be placed in between them at a position where the net force is zero.

Where should it be placed: closer to q1 or q2 ?

$\bigcirc \mathrm{q}_{3}$
A. Closer to q_{1}
B. Closer to q_{2}

Example 15.3 Where is the resultant force zero?

Two charges are in a line
$q_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?
closer to q_{1} or q_{2} ?

Magnitudes of forces are equal
$F_{13}=F_{23}$
$\frac{k q_{1} q_{3}}{(2-x)^{2}}=\frac{\mathrm{kq}_{2} \mathrm{q}_{3}}{x^{2}}$
$\frac{q_{1}}{(2-x)^{2}} \frac{q_{2}}{x^{2}}$

Chapter 15.3
 Electric Fields / Electric Field

 Lines-Definition of electric field

- Interaction of electric fields with charges
- Electric field lines
- Electric field from a point charge
-Electric field from several point charges.

The Electric Field exists in space surrounding a charge

To determine E at position r place a test charge q_{0} at this position and measure the force on the test charge.

$$
\vec{E}=\frac{\vec{F}}{q_{0}}
$$

$$
\text { units } N / C
$$

also Volts/m
(volt is a unit of electrical potential)

Electric field due to positive and negative charges at the position of the test charge

$$
\begin{array}{cc}
\vec{E}=\frac{\vec{F}}{q_{0}} & \begin{array}{c}
q_{0} \text { positive test } \\
\text { charge }
\end{array} \\
+\mathrm{Q} & \overrightarrow{\mathrm{q}_{0}}
\end{array}
$$

Electric field due to a point charge q at distance r , Coulomb's Law

$$
\begin{aligned}
& \vec{E}=\frac{\vec{F}}{q_{o}}=\frac{k_{e} q}{r^{2}} \\
& \vec{E} \uparrow \\
& \vec{E} \\
& \bigcirc \\
& +q \\
& \bigcirc \\
& \text {-q }
\end{aligned}
$$

Find the electric field at a distance of 10 cm from a point charge of $10^{-9} \mathrm{C}$

$$
E=k_{e} \frac{q}{r^{2}}=9 \times 10^{9} \frac{10^{-9}}{(0.1)^{2}}=9 \times 10^{2} \mathrm{~N} / \mathrm{C}
$$

Electric Field

- Vector valued function
- Aligned with force

Superposition of Electric Field

$$
\begin{gathered}
\bar{E}_{2}=\left(\frac{1}{4 \pi \varepsilon_{0}}\right) \frac{q_{2}}{r^{2}} \hat{r} \\
\underbrace{\prime} \\
\bar{E}_{1}=\left(\frac{1}{4 \pi \varepsilon_{o}}\right) \frac{q_{1}}{r^{2}} \hat{r}=\bar{E}_{1}+\bar{E}_{2} \\
+\mathbf{q}_{\mathbf{2}}
\end{gathered}
$$

Two charges of $10^{-9} \mathrm{C}$ are placed at two corners of an equilateral triangle with sides of 10 cm . Find E at the third corner.
$\mathrm{E}_{1}=\mathrm{E}_{2}=\quad \frac{k q}{r^{2}}=\frac{9 \times 10^{9}\left(10^{-9}\right)}{(0.1)^{2}}=900 \mathrm{~N} / \mathrm{C}$
$E=2 E_{1} \cos 30=1.56 \times 10^{3} \mathrm{~N} / \mathrm{C}$
What is the direction of E ?
A. Left

B. Right
C. Up
D. Down

Electric field due to $2+$ charges

Electric field due to a dipole

dipole moment $q d=\mu$

$$
\begin{aligned}
& \text { Far field } \\
& \text { as } \theta->0 \\
& \mathrm{E}_{\mathrm{A}}=2 \mathrm{E}_{\mathrm{o}} \quad \mathrm{E}_{\mathrm{B}}=2 \mathrm{E}_{\mathrm{o}} \sin \theta \\
& \mathrm{E}_{\mathrm{C}}=2 \mathrm{E}_{\mathrm{o}} \sin \theta \Rightarrow 2 \mathrm{E}_{\mathrm{o}} \frac{\mathrm{~d} / 2}{\mathrm{r}} \\
& E_{o}=\frac{k_{e} q}{r^{2}} \\
& \text { E falls off as } 1 / r^{3} \\
& E_{c}=\frac{k_{e} q d}{r^{3}}=\frac{k_{e} \mu}{r^{3}}
\end{aligned}
$$

The Electric Field exerts a Force on a Charge

Cathode ray tube

Electric field Accelerates e-

electrons

Oscilloscope

An electron is accelerated from rest in a constant electric field of 1000 N/C through a distance of 3 cm . Find the force on the electron. Find the velocity of the electron. $\mathrm{m}_{\mathrm{e}}=9 \times 10^{-31} \mathrm{~kg}$.

Electrophoresis- Separation of DNA (Negatively charged ~-1000 e) In an Electric field ~1000 N/C,

Electric field lines

The electric field vector \mathbf{E} is tangent to the electric field line

The number of electric field lines per unit area through a surface perpendicular to the lines is proportional to the strength of the electric field in a given region

Rules:

1. Electric Field Lines Begin at + charge and terminate on - charge (some lines can begin or end at infinity)
2. Number of lines leaving + charge or ending at charge is proportional to the charge
3. No two lines can cross

The electric field from an isolated positive charge

The electric field from an isolated negative charge

Electric field lines from a dipole $+\mathrm{q},-\mathrm{q}$

Electric field lines from $2+q$ charges

Electric field lines due to unequal charges $+2 q$ and -q

