PHYSICS 1B – Fall 2007

Electricity & Magnetism

Professor Brian Keating SERF Building. Room 333

Why is the series law easy to understand?

Recall that the resistance of a resistor is

Resistors in Series I same, ΔV different What is the equivalent resistance R_{eq} ?

For N resistors in series $R_{eq} = R_1 + R_2 + \dots R_N$

R_{eq} is larger than any R

Why is the parallel law easy to understand?

Recall that the resistance of a resistor is

Resistors in parallel, ΔV same, I different

For N resistors in parallel

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

R_{eq} is smaller than any R

Comparisons: Resistors & Capacitors

- Resistors in series are like capacitors in parallel.
- Resistors in parallel are like capacitors in series.
- This is because R ~ L and C~1/L
- And because R~1/A and C~A

Why do we care?

Consider Simple Circuit: Two resistors in Series

Ch 18 Kirchoff's 2 Rules

- 1. Junction rule
- 2. Loop rule

Rule #1. "Junction rule"

The current flowing into a junction is equal to the current flowing out.

$$I_1 = I_2 + I_3$$

This comes from 'conservation of charge'

#2. Loop rule

"The sum of voltage differences in going around a closed current loop is equal to zero"

 $\sum_{loop} \Delta V_i = 0$

#2. Loop rule

The sum of voltage differences in going around a closed current loop is equal to zero

 $\sum_{loop} \Delta V_i = 0$

Voltage changes in traversing the loop

Choose a current direction

-IR, current in traversal direction
+IR current in opposite direction
+ΔV voltage increases along traversal direction
-ΔV voltage decreases along traversal direction

$$\Delta V_1 - I_1 R_1 + I_3 R_3 - \Delta V_2 = 0$$

If I is negative when you solve the equations, the current flows in the opposite direction than you chose.

only 2 of these equations are independent

Using Kirchoff's rules

(1) Write the equations for the junction rule.

(2) Write the equations for the loop rule. Choose a direction for currents. If the current is negative then it flows in the opposite direction. Use as many equations as necessary to solve for all unknown quantities. (for n unknowns need n equations).

(3) Solve the set of equations for n unknown quantities.

- No. equations needed= 3
 - no. Junction= 1

Find I_1 , I_2 , I_3

Chapter 18.5 RC circuit

Time dependent currents and voltages. Applications. clocks, timing circuits, computers. Time to charge and discharge of a capacitor

When the switch is closed how does the current and voltage change with time?

Switch off

Capacitor uncharged

 $\Delta V_c = 0$

switch

When the switch is initially closed the voltage on the capacitor is zero.

Charge is transferred to the capacitor at a rate I=dq/dt. As the capacitor is charging the charge and voltage on the capacitor increases with time and the current decreases.

Time Constant

$$\tau = RC$$

Dimensional analysis

$$RC = \frac{V}{I}\frac{q}{V} = \frac{q}{I} = \frac{q}{q/t} = t$$

RC has units of time

Time required to charge the capacitor

- increases with R lower current flow
- Increases with C more charge on capacitor

How does the time to charge the capacitor depend on R and C

Charging time τ_o

longer than τ_o the current is smaller

shorter than τ_{o} because the current is larger

longer than τ_{o} more charge is transferred

Discharging

switch

When the switch is closed to discharge the capacitor the capacitor has a maximum charge of q_o and maximum voltage V_o .

As the capacitor discharges the charge and voltage decrease with time.

The current will also decrease with time.

Discharge

The charge decays exponentially with time

Exponential decay

Found in many other systems-Chemical reaction, nuclear decay

$$A \rightarrow B$$

When the rate of decay of a species is proportional to the amount of the species

$$A = A_o e^{-\left(\frac{t}{\tau}\right)}$$

 τ is a constant

A 12 µfarad capacitor is discharged through a 2 k Ω resistor. How long does it take for the voltage to decay to 5% of the initial voltage.

 $\tau = RC = 2x10^{3}(12x10^{-6}) = 24x10^{-3}s = 24ms$ $V = V_{o}e^{-\left(\frac{t}{\tau}\right)}$

$$\frac{V}{V_o} = e^{-\left(\frac{t}{\tau}\right)}$$

$$\ln\left(\frac{V}{V_{o}}\right) = -\frac{t}{\tau}$$

$$t = -\tau \ln\frac{V}{V_{o}} = -24x10^{-3}(\ln(0.05)) = 7.2x10^{-2}s$$

33. Consider a series RC circuit for which R=1.0 M Ω , C=5.0 µF and ϵ =30 V. The capacitor is initially uncharged when the switch is open. (a) Find the charge on the capacitor 10 s after the switch is closed.

$$\tau = RC = 1x10^{6}(5x10^{-6}) = 5.0s$$

$$q = q_{o}(1 - e^{-\frac{t}{RC}}) = q_{o}(1 - e^{-\frac{t}{\tau}})$$

$$C = \frac{q}{\Delta V}$$

$$q_{o} = \Delta VC = 30(5x10^{-6}) = 1.5x10^{-4}C$$

$$q = q_o(1 - e^{-\frac{t}{RC}}) = 1.5x10^{-4}(1 - e^{-\frac{10}{5}})$$
$$q = 1.3x10^{-4}C$$

You plan to make a flasher circuit that charges a capacitor through a resistor up to a voltage at which a neon bulb discharges (about 100V) about once every 5 sec. If you have a 10 microfarad capacitor what resistor do you need?

Charging flash ΔV_c

c

time

HW – Clickers Out

1) From 17.3: A 1.00 V potential difference is maintained across a 10.0 Ω resistor for a period of 20.0 s. What total charge passes through the wire in this time interval?

- A) 4 C
- B) 1 C
- C) can't determine
- D) 2 C

2) From 17.33: How many 100 W light bulbs can you use in a 120 V circuit without tripping a 15 A circuit breaker? (the potential difference across each bulb is 120 V.)

- A) 1 bulb
- B) 18 bulbs
- C) 9 bulbs
- C) 10 bulbs

3) From 17.9: If the current carried by a conductor is doubled what happens to the charge carrier density?

- A) doubled
- B) unchanged
- C) halved

4) From 18.5: Find the equivalent resistance between points *a* and *b* in the figure.

A) 2.4 Ω
B) 17.1 Ω C) 30 Ω D) 1.6 Ω b а

5) From 18.7: Find the equivalent resistance between points a and b in the figure. Each resistor has resistance R.

6) From 18.21: What is the EMF of the battery in the following figure?

- A) 8.0 V
- B) 14.3 V
- C) 5.8 V
- D) 10.7 V

