PHYSICS 1B - Fall 2007

Electricity \& Magnetism

Professor Brian Keating
SERF Building. Room 333

Why is the series law easy to understand?

- Recall that the resistance of a resistor is

Resistors in Series I same, $\Delta \mathrm{V}$ different What is the equivalent resistance $R_{\text {eq }}$?

$$
\begin{aligned}
& \Delta V=\Delta V_{1}+\Delta V_{2} \\
& \Delta V=I R_{\text {eq }}=I R_{1}+I R_{2} \\
& R_{\text {eq }}=R_{1}+R_{2}
\end{aligned}
$$

For N resistors in series

$$
R_{e q}=R_{1}+R_{2}+\ldots \ldots . R_{N}
$$

$R_{\text {eq }}$ is larger than any R

Why is the parallel law easy to understand?

- Recall that the resistance of a resistor is

$$
R=\rho \frac{L}{A}
$$

$$
R \sim 1 / \text { Area }
$$

$$
\begin{aligned}
& A_{\text {tot }}=A_{1}+A_{2} \\
& A_{\text {tot }}=1 / R_{1}+1 / R_{2}
\end{aligned}
$$

$$
R_{\text {tot }} \sim 1 / A_{\text {tot }} \sim 1 /\left(1 / R_{1}+1 / R_{2}\right)
$$

Resistors in parallel, ΔV same, I different

$$
\begin{gathered}
\frac{\Delta V}{R_{e q}}=I=\frac{\Delta V}{R_{1}}+\frac{\Delta V}{R_{2}} \\
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
\end{gathered}
$$

For N resistors in parallel

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \ldots \ldots+\frac{1}{R_{N}}
$$

$R_{\text {eq }}$ is smaller than any R

Comparisons: Resistors \& Capacitors

- Resistors in series are like capacitors in parallel.
- Resistors in parallel are like capacitors in series.
- This is because $\mathrm{R} \sim \mathrm{L}$ and $\mathrm{C} \sim 1 / \mathrm{L}$
- And because R~1/A and C~A

Why do we care?

Consider Simple Circuit: Two resistors in Series

Ch 18 Kirchoff's 2 Rules

1. Junction rule
2. Loop rule

Rule \#1. "Junction rule"

The current flowing into a junction is equal to the current flowing out.

This comes from 'conservation of charge'

\#2. Loop rule

"The sum of voltage differences in going around a closed current loop is equal to zero"

$\sum_{\text {100 }} \Delta V_{i}=0$

\#2. Loop rule

The sum of voltage differences in going around a closed current loop is equal to zero

$\sum_{\text {100p }} \Delta V_{i}=0$

Voltage changes in traversing the loop

Choose a current direction
-IR, current in traversal direction
+IR current in opposite direction
$+\Delta V$ voltage increases along traversal direction
$-\Delta V$ voltage decreases along traversal direction

$$
\Delta V_{1}-I_{1} R_{1}+I_{3} R_{3}-\Delta V_{2}=0
$$

If I is negative when you solve the equations, the current flows in the opposite direction than you chose.

Not all loop equations are independent

$\Delta V-I_{1} R_{1}-I_{3} R_{3}=0 \quad I_{3} R_{3}-I_{2} R_{2}=0$

$$
\Delta V-I_{1} R_{1}-I_{2} R_{2}=0
$$

only 2 of these equations are independent

Using Kirchoff's rules

(1) Write the equations for the junction rule.
(2) Write the equations for the loop rule. Choose a direction for currents. If the current is negative then it flows in the opposite direction. Use as many equations as necessary to solve for all unknown quantities. (for n unknowns need n equations).
(3) Solve the set of equations for n unknown quantities.

Find I_{1}, I_{2}, I_{3}
No. equations needed $=3$

Chapter 18.5 RC circuit

Time dependent currents and voltages.
Applications. clocks, timing circuits, computers.
Time to charge and discharge of a capacitor

RC circuit

When the switch is closed how does the current and voltage change with time?

RC circuit

Switch off

Capacitor uncharged
C $\quad \Delta \mathrm{V}_{\mathrm{c}}=0$

Charging

Switch on

$$
\Delta \mathrm{V}_{\mathrm{c}}=\frac{q}{C}
$$

$$
\Delta V_{o}-I R-\Delta V_{c}=0
$$

switch

When the switch is initially closed the voltage on the capacitor is zero.
Charge is transferred to the capacitor at a rate I=dq/dt.
As the capacitor is charging the charge and voltage on the capacitor increases with time and the current decreases.

Charging Capacitor

$\tau \quad$ Time (t)
$\Delta V_{o}=I R+\frac{q}{C}$
intermediate times

$$
\begin{array}{ccc}
\mathrm{q}=\sim 0 & q=q_{o}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right) & \mathrm{q}=\mathrm{q}_{o} \\
\Delta V_{C}=\approx 0 & \Delta V_{c}=V_{o}\left(1-e^{-\left(\frac{t}{\tau}\right)}\right) & \Delta V_{C}=\Delta V_{o} \\
I=\approx \frac{\Delta V_{o}}{R} & I=\frac{\Delta V_{o}}{R} e^{-\left(\frac{t}{\tau}\right)} & \tau=R C
\end{array} \quad I=0
$$

long times

Time Constant

$$
\tau=R C
$$

Dimensional analysis

$$
R C=\frac{V}{l} \frac{q}{V}=\frac{q}{l}=\frac{q}{q / t}=t
$$

$R C$ has units of time
Time required to charge the capacitor

- increases with R - lower current flow
- Increases with C - more charge on capacitor

How does the time to charge the capacitor depend on R and C

Charging time τ_{0}

longer than τ_{o} the current is smaller

shorter than τ_{o} because the current is larger

longer than τ_{o} more charge is transferred

Discharging

Switch off

Capacitor charged
C
$\Delta V_{c}=\frac{q}{C}$
switch
When the switch is closed to discharge the capacitor the capacitor has a maximum charge of q_{o} and maximum voltage V_{0}.
As the capacitor discharges the charge and voltage decrease with time.
The current will also decrease with time.

Discharge

Switch on
Current flows

$\Delta V_{R}=I R=\Delta V_{c}=\frac{q}{C}$
$I=-\frac{\Delta q}{\Delta t}=\frac{q}{R C}$

$$
q=q_{0} e^{-\left(\frac{t}{t}\right)}
$$

The charge decays exponentially with time

$$
\begin{array}{ccc}
\mathrm{q}=\mathrm{q}_{0} & q=q_{o} e^{-\left(\frac{t}{\tau}\right)} & 0 \\
\Delta V_{C}=\Delta V_{o} & \Delta V_{c}=V_{o} e^{-\left(\frac{t}{\tau}\right)} & 0 \\
I=\frac{\Delta V_{o}}{R} & I=\frac{\Delta V_{o}}{R} e^{-\left(\frac{t}{\tau}\right)} & \tau=R C
\end{array}
$$

$$
\Delta V_{c}-\Delta V_{R}=0
$$

long times

Exponential decay

Found in many other systemsChemical reaction, nuclear decay

$$
A \rightarrow B
$$

When the rate of decay of a species is proportional to the amount of the species

$$
\frac{\Delta \mathrm{A}}{\Delta \mathrm{t}}=-\frac{\mathrm{A}}{\tau}
$$

The result is exponential decay

$$
A=A_{o} e^{-\left(\frac{t}{\tau}\right)} \quad \tau \text { is a constant }
$$

A 12μ farad capacitor is discharged through a $2 \mathrm{k} \Omega$ resistor. How long does it take for the voltage to decay to 5% of the initial voltage.

$$
\begin{gathered}
\tau=R C=2 \times 10^{3}\left(12 \times 10^{-6}\right)=24 \times 10^{-3} \mathrm{~s}=24 \mathrm{~ms} \\
V=V_{o} e^{-\left(\frac{t}{\tau}\right)} \\
\frac{V}{V_{o}}=e^{-\left(-\frac{t}{\tau}\right)} \\
\ln \left(\frac{V}{V_{o}}\right)=-\frac{t}{\tau} \\
t=-\tau \ln \frac{V}{V_{0}}=-24 \times 10^{-3}(\ln (0.05))=7.2 \times 10^{-2} s
\end{gathered}
$$

33. Consider a series $R C$ circuit for which $R=1.0 \mathrm{M} \Omega$, $\mathrm{C}=5.0 \mu \mathrm{~F}$ and $\varepsilon=30 \mathrm{~V}$. The capacitor is initially uncharged when the switch is open. (a) Find the charge on the capacitor 10 s after the switch is closed.

$$
\begin{aligned}
& \tau=R C=1 \times 10^{6}\left(5 \times 10^{-6}\right)=5.0 \mathrm{~s} \\
& q=q_{o}\left(1-e^{-\frac{t}{R C}}\right)=q_{o}\left(1-e^{-\frac{t}{\tau}}\right) \\
& C=\frac{q}{\Delta V} \\
& q_{o}=\Delta V C=30\left(5 \times 10^{-6}\right)=1.5 \times 10^{-4} C
\end{aligned}
$$

$$
q=q_{o}\left(1-e^{-\frac{t}{R C}}\right)=1.5 \times 10^{-4}\left(1-e^{-\frac{10}{5}}\right)
$$

$$
q=1.3 \times 10^{-4} C
$$

You plan to make a flasher circuit that charges a capacitor through a resistor up to a voltage at which a neon bulb discharges (about 100V) about once every 5 sec . If you have a 10 microfarad capacitor what resistor do you need?

Voltage
Capacitor
source

$$
\begin{array}{ll}
\tau=R C \\
R=\frac{\tau}{C}=\frac{5}{10 \times 10^{-6}}=0.5 \times 10^{6} \Omega & \text { About } \\
0.5 \mathrm{M} \Omega
\end{array}
$$

Charging

time

HW - Clickers Out

1) From 17.3: A 1.00 V potential difference is maintained across a 10.0Ω resistor for a period of 20.0 s . What total charge passes through the wire in this time interval?

- A) 4 C
- B) 1 C
- C) can't determine
- D) 2 C

2) From 17.33: How many 100 W light bulbs can you use in a 120 V circuit without tripping a 15 A circuit breaker? (the potential difference across each bulb is 120 V .)

- A) 1 bulb
- B) 18 bulbs
- C) 9 bulbs
- C) 10 bulbs

3) From 17.9: If the current carried by a conductor is doubled what happens to the charge carrier density?

- A) doubled
- B) unchanged
- C) halved

4) From 18.5: Find the equivalent resistance between points a and b in the figure.

5) From 18.7: Find the equivalent resistance between points a and b in the figure. Each resistor has resistance R.

- A) 2.5 R
- B) 5 R
- C) 12.75 R
- D) R

6) From 18.21: What is the EMF of the battery in the following figure?

- A) 8.0 V
- B) 14.3 V
- C) 5.8 V
- D) 10.7 V

