PHYSICS 1B

Electricity \& Magnetism

Professor Brian Keating

Not Polls, Poles!

The South Magnetic Pole

- the point on the Earth's surface where the geomagnetic field lines are directed vertically upwards. The South Magnetic Pole is constantly wandering due to changes in the Earth's magnetic field; as of 2005 it was calculated to lie at $64.53^{\circ} \mathrm{S}$ and $137.86^{\circ} \mathrm{E}$ [1], just off the coast of Wilkes Land, Antarctica.
- The Earth's geomagnetic field can be approximated by a tilted dipole placed at the center of the Earth. The South Geomagnetic Pole is the point where the axis of this best-fitting tilted dipole intersects the Earth's surface in the southern hemisphere. As of 2005 it was calculated to be located at $79.74^{\circ} \mathrm{S}$ and $108.22^{\circ} \mathrm{E}$ [4], near to Vostok Station, Antarctica..

Copyright John Wiley \& Sons Rotational axis

Magnetic bacteria

Migrate to north pole in northern hemisphere

Migrate to south pole in southern hemisphere

Generally downward to the mud

Magnetic particles

Electron
micrograph

Today

- Right hand rule
- Magnetic force on charges - circular motion
- Magnetic force on wires
- Torque \& electric motors (not engines)

Right hand rule

1. F is perpendicular to the plane of v and B.
2. Direction of F given by the right hand rule .

Motion of a charged particle in a magnetic field

F is in a plane perpendicular to B

After Δt particle is in the same plane

Particle moves in a plane perpendicular to B
(uniform magnetic field)

Circular Motion in Constant Magnetic Field

$$
\mathrm{F}_{\text {centripetal }}=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{r}}
$$

$$
\mathrm{r}=\frac{\mathrm{mv}^{2}}{\mathrm{qvB}}=\frac{\mathrm{mv}}{\mathrm{qB}} \frac{\begin{array}{l}
\text { Radius of path } \\
\text { produced by } \\
\text { magnetic field }
\end{array}}{}
$$

Sometimes l'll give you the velocity; other times the energy $=1 / 2 \mathrm{~m} \mathrm{v}^{2}$.

Motion of particle in plane perpendicular to B

The particle moves in a circular path

A proton with $v=1 \times 10^{6} \mathrm{~m} / \mathrm{s}$ is in a uniform magnetic field of 0.2 T . Find the radius of the trajectory.

Application

Mass spectrometer

A mass spectrometer with a ion velocity selector at the inlet selects ions with $v=5 \times 10^{4} \mathrm{~m} / \mathrm{s}$. What B field is necessary to rotate a molecular ion $\mathrm{CO}_{2}{ }^{+}$with a mass of $6.67 \times 10^{-26} \mathrm{~kg}$ through radius of 0.20 m ?

Force on a current carrying wire

The force on a wire carrying a current in a magnetic field is just the sum of the forces on the individual charge carriers.
total Force is the sum of forces

I due to moving charges

Many applications, currents produce forces Electric motors, loudspeakers

Magnetic force on a current carrying wire of length L

 in a perpendicular B field

F= sum ot forces on all charges $=\sum q v B$ since $\sum q=\rho L A \quad \rho$ is the charge/volume then $F=\rho L A v B$
since $I=\frac{\Delta q}{\Delta t}=\rho A v$
Finally

$$
F=B I L
$$

For angle θ between L and B

$$
F=B I L \sin \theta
$$

B parallel to direction of wire, $\theta=0, F=0$
B perpendicular to direction of wire $\theta=90^{\circ}, F=B I L$

A transmission line carries a current of 100 A from east to west. The magnetic field is 0.05 mT in the northward direction. Find the force on a 100 m section of wire. What direction is the force?

$$
F=I L B=100(100)\left(0.05 \times 10^{-3}\right)=0.5 \mathrm{~N}
$$

S
Looking from above

Loudspeaker

Forces on a loop in a uniform B field

B field is uniform and in the plane of the current loop
Find the forces acting on the wires in the loop. (a and b are the lengths)

Review of Torque

Torque= Force \times perpendicular distance

$$
\tau=F d
$$

The current loop in a B field generates a torque around the center proportional to the area of the loop

The two forces generate

Side view

(b)
a torque around the center

$$
\begin{aligned}
& \hat{o}=\mathrm{F}_{1}\left(\frac{\mathrm{a}}{2}\right)+\mathrm{F}_{2}\left(\frac{\mathrm{a}}{2}\right) \\
& \hat{\mathrm{O}}=\mathrm{Blba}
\end{aligned}
$$

$\tau=\mathrm{BIA}$

$A=a x b=$ area of loop

counterclockwise

Loop makes an angle with B

(c)

$$
\tau=B I A \sin \theta
$$

$\tau=B I A \sin \theta$

The torque tilts the loop so the normal is parallel to B

Loop with N turns of wire

$\tau=N B I A \sin \theta$

Torque increases with $\mathrm{N}, \mathrm{B}, \mathrm{I}$ and A
Torque is maximum when $\theta=90^{\circ}$, when the loop is parallel to the field
Torque is zero when $\theta=0$ when loop is perpendicular to the field

A 3A current wire-loop (with 100 turns) and an area of $0.2 \mathrm{~m}^{2}$ makes an angle of 30° with a magnetic field of 0.3 T .
a) Find the torque exerted on the coil.
b) What is the direction of rotation?
c) What happens if the current is reversed in the coil?

a) $\tau=N B I A \sin \theta$
$=100(0.3)(3.0)(0.2) \sin 60=1.6 \times 10^{1} \mathrm{Nm}$
b) counter clockwise direction
c) the torque will have the same magnitude but in the opposite (clockwise) direction,

Electric motors (not same as 'engines')

A current loop in a magnetic field produces a torque

Problem
A dc current does not produce complete rotation

$\tau=0$
dc current only rotates coil until it is perpendicular to the field

Solution with direct current source is to use a commutator.

Split-ring commutator reverses the current direction when $\tau=0$.

HW Problems, Clickers out

1) From 19.8: An electron is accelerated through 2400 V from rest and then enters a region where there is a unifrom 1.70 T magnetic field. What is the maximum magnitude of the magnetic force acting on the electron?

- A) $7.9 \times 10^{-12} \mathrm{~N}$
- B) $2.9 \times 10^{8} \mathrm{~N}$
- C) 5.2 N
- D) $8.4 \times 10^{-5} \mathrm{~N}$

2) From 19.9: A proton moves perpendicularly to a uniform magnetic field B at $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ and exhibits an acceleration of $2.0 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}$ in the $+x$ direction when its velocity is in the $+z$ direction. Determine the magnitude of the field.

- A) 8.00 T
- B) 1.93 T
- C) .21 T
- D) .021 T

3) From 19.11: A current $l=15 \mathrm{~A}$ is directed along the positive x-axis and perpendicular to a magnetic field. A magnetic force per unit length of $.12 \mathrm{~N} / \mathrm{m}$ acts on the conductor in the negative y-direction. Calculate the magnitude of the magnetic field in the region through which the current passes.

- A) $1.4 \times 10^{-6} \mathrm{~T}$
- B) 4.2 T
- C) $8.0 \times 10^{-3} \mathrm{~T}$
- D) $6.5 \times 10^{3} \mathrm{~T}$

