PHYSICS 1B - Fall 2007

Electricity \& Magnetism

Professor Brian Keating
SERF Building. Room 333

What score do I think I received on the quiz:

- A. 0 out of 10
- B. 1-3 out of 10
- C. 4-6 out of 10
- D. 7-9 out of 10
- E. 10 out of 10

Quiz Grades: Up on 1B website this week

Chapter 16 Electrical Potential

Electrical potential energy
Electrical potential

Potential Energy of a system of charges and masses (the field is uniform, constant)

work done by Electric field

work done by Gravitational field

Change in PE =-work done by the field

Potential Energy of a system of charges

$\triangle P E=-q E d$

Work done by the Electric field decreases the PE of the system

$$
\begin{gathered}
\mathrm{W}=\mathrm{Fd} \\
\Delta \mathrm{PE}=-\mathrm{W}=-\mathrm{Fd}=-\mathrm{qEd}
\end{gathered}
$$

Potential, V

$$
V=\frac{\Delta P E}{q}
$$

Units $\frac{\text { Joules }}{\text { Coulomb }}=$ Volt (V)
Relation between E and V

$$
\begin{aligned}
& V=E d \\
& E=\frac{V}{d}
\end{aligned}
$$

E has units of V / m

Difference between Potential Energy and Potential

Potential-Depends only position in the field. Units (V)

Potential Energy- Depends on the interaction of the field with a charge. Units (J)

Related by

$$
\Delta P E=q \Delta V
$$

Both PE and V are relative.
Only differences/changes in Potential Energy and Voltage ($\Delta \mathrm{PE}$ and $\Delta \mathrm{V}$) are important.

Potential
Potential Energy

The potential field is a property of the space due to charges

The potential energy is due to the charge interacting with the potential field.

A parallel plate capacitor has a constant electric field of $1000 \mathrm{~V} / \mathrm{m}$. The distance between the plates is 5 cm . Find the potential difference between the two plates.

Potential Energy = Voltage?

- (T) True
- (F) False

An molecular ion CO^{+}is accelerated from rest across a potential difference of 1000 V . Find the final velocity of the ion. Mass $=4.7 \times 10^{-26} \mathrm{~kg}$

Potential due to a point charge

E field is not constant

$$
E=\frac{k_{e} q}{r^{2}}
$$

E gets smaller with distance
The potential

$$
V=\frac{k_{e} q}{r}
$$

$$
\mathrm{V}=0 \text { at } \quad r=\infty
$$

Dimensional arguments
$\mathrm{V}=$ Electric field x length $\mathrm{e} . \mathrm{g}$. for constant field
$\mathrm{V}=\mathrm{Ed}$

For point charge

$$
\begin{aligned}
& E=\frac{k_{e} q}{r^{2}} \\
& V=\frac{k_{e} q}{r}
\end{aligned}
$$

V has the appropriate units of E times length

Potential and E field due to positive point charge

E and V due to a negative point charge

Potential energy of 2 point charges

$$
P E=q_{1} V_{21}=q_{2} V_{12}
$$

V_{21} is the potential due to charge2 at the position of charge1.

$$
P E=\frac{k_{e} q_{1} q_{2}}{r_{12}}
$$

$$
P E=0 \quad \text { at } r=\infty
$$

Potential energy and Potential are Scalar (not Vector) quantities

In a crystal of $\mathrm{Na}^{+} \mathrm{Cl}^{-}$the distance between the ions is 0.24 nm . Find the potential due to Cl^{-}at the position of the Na^{+}. Find the electrostatic energy of the Na^{+} due to the interaction with Cl^{-}.
$\mathrm{r}=0.24 \mathrm{~nm}$

$V=\frac{k_{e} q}{r}=\frac{9 \times 10^{9}\left(-1.6 \times 10^{-19}\right)}{\left(0.24 \times 10^{-9}\right)}=-6.0 \mathrm{~V}$ at the position of $\mathrm{Na}+$
$P E=q V=1.6 \times 10^{-19} x-6.0=-9.6 \times 10^{-19} \mathrm{~J}$
ELECTRON VOLT (convenient unit for atomic physics)
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
PE=-6.0 eV
(energy in eV is V times the charge in electron units)

Hydrogen Bond

$\mathrm{N}-\mathrm{H}$
O-C
$\longrightarrow \mathrm{N}-\mathrm{H}^{-}-\mathrm{C}$

The hydrogen bond energy can be estimated by partial charges
$-0.3 e+0.3 e \quad-0.4 e+0.4 e$

bond energy $=$ sum $\frac{k q_{1} q_{j}}{r_{\mathrm{i}}}$ (scalar sum)

DNA
$\Delta \mathrm{PE}=\frac{\mathrm{ke}^{2}}{10^{-9}}\left(\frac{(-.3)(-.4)}{.1+.2}+\frac{-.3(.4)}{.1+.2+.25}+\frac{+.3(-.4)}{.2}+\frac{.3(.4)}{.2+.25}\right)=-3.49 \times 10^{-20} \mathrm{~J}$
$\Delta P E=-0.22 \mathrm{eV} \quad$ Weaker than a ionic bond but still significant.

