PHYSICS 1B - Fall 2007

Electricity \& Magnetism

Monday October 1, 2007 Course Week 1

Professor Brian Keating
SERF Building. Room 333

Physics 1B Electricity \& Magnetism!

- Professor - Brian Keating bkeating@ucsd.edu
- Office hours: Mondays 2-3p,
- Office Location: SERF Building, Room 333
- Lectures: MWF WLH 2005 10-10:50p
- Quizzes: One every other week
- 4 total quizzes - you are allowed to drop 1 quiz, so no makeup quizzes \because
- Grade
- Quizzes 60\% (best 3 out of 4)
- Final exam 40\%
- Extra credit 5\%
- Final exam in WLH 2005

That'c itl M/hat ahnıit hnmoisırk? 2 ?

Office Hours: My office is in the Science \& Eng. Research Facility = "SERF Building"

Today's Plan

- Review Policies
- Electric Force: Coulomb's Law

Logistical Stuff

- Last day to add a class: Friday, October 12

Clickers

- Buy them ASAP if you want Extra Credit

Detecting charge - Electroscope

Figure 1: Electroscope

Charging by Rubbing

Triboelectic sequence
Fur
Glass
Silk
Cotton
Wood
Rubber
Positive

negative

Negative charges transferred from glass to silk

Charging by conduction

Charged rubber rod transfers electrons to metal sphere

(a) Before

(b) After

Induced charge (Polarization)

Attractive Force

induced charge
uncharged conductor

Charging by induction
 (polarization)

Ground - sink for electric charge

Connection to ground

Charging -
 Van de Graaf Generator

Spark- charge conduction due to ionization of atoms.

Chapter 15.2 Electric Forces Coulomb's Law

1. Force between two point charges
2. Superposition of forces from several point charges.

Magnitude of charge

- Units of charge- Coulomb, C
- Charge on electron - e
- $\mathrm{e}=1.60 \times 10^{-19} \mathrm{C}$

Point Charges

Point charge- charge localized at a point in space is an idealized object

Spherical charge distributions act as point charges with charge at the center

Small objects far away from each other act as point charges. Two charged pennies one mile apart

Measured the force between charges
Charles Coulomb 1724-1806

Torsion Balance

5me

$$
\begin{aligned}
& \text { Like charges repel } \\
& \text { Unlike charges attract }
\end{aligned}
$$

$$
F=\frac{k q_{1} q_{2}}{r^{2}}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}} \text { Coulomb's } \text { Law }
$$

$$
k=\frac{1}{4 \pi \varepsilon_{0}} \approx 9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}=\text { Coulomb's constant }
$$

Force between Charges

Magnitude of F
proportional to product of charges $q_{1} q_{2}$ Inversely proportional to distance between charges, r, squared
Direction of F
along line between charges.
Repulsive for like charges, Attractive for unlike charges

Coulomb's Law

vector form

$$
\vec{F}_{i j}=\frac{k_{e} q_{i} q_{j}}{r^{2}} \hat{r}
$$

^ a vector between
r charges with unit length.
$q_{i} q_{j}>0 \mathrm{~F}$ is repulsive $q_{i} q_{j}<0 F$ is attractive

Coulomb's Law

magnitude of force between 2 point charges or 2 spherical distributions of charge

$$
\begin{aligned}
&|F|=k_{e} \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}} \\
& \mathrm{k}_{\mathrm{e}}= 8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \\
& \sim 9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}
\end{aligned}
$$

2 charges, each 1 Coulomb

$$
\begin{aligned}
& F=\frac{\left(9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / C^{2}\right)(1 C)(1 C)}{1 \mathrm{~m}^{2}}=9 \times 10^{9} \mathrm{~N} \\
& F=\left(9 \times 10^{9} \mathrm{~N}\right)(1 \mathrm{lb} / 4.45 \mathrm{~N})(1 \text { ton } / 2000 \mathrm{lb})=1.01 \text { Million tons! }
\end{aligned}
$$

Magnitude of charge

How much charge is one mole of electrons?

$$
\begin{aligned}
& \frac{\text { Coulombs }}{m o l e}=\frac{\text { electrons }}{m o l e} \times \frac{\text { Coulombs }}{\text { electron }} \\
& \frac{\left(6 \times 10^{23} e\right)}{m o l e} \frac{\left(1.6 \times 10^{-19} \mathrm{C}\right)}{e} \\
& =9.6 \times 10^{4} \mathrm{C} / \text { mole } \\
& \approx 10^{5} \mathrm{C} / \text { mole }
\end{aligned}
$$

Example

$1 \mathrm{~cm}{ }^{3}$
copper spheres

Removal of one valence electron out of 5.7×10^{12} would provide enough net charge to lift the top sphere, overcoming the gravity of the entire Earth.
-Let's examine the amount of charge in a sphere of copper of volume one cubic centimeter.
-Cu has one valence electron outside of closed shells in its atom, and that electron is free to move.
-The density of metallic $\mathrm{Cu}=9 \mathrm{~g} / \mathrm{cm}^{3}$ and one mole of $\mathrm{Cu}=63.5$ grams so the cubic centimeter of $\mathrm{Cu}=1 / 7$ th of a mole or about $8.5 \times 10^{22} \mathrm{Cu}$ atoms.
-With one mobile electron per atom, and with the electron charge of $1.6 \times 10^{-19} \mathrm{C}$, so there are $\sim 13,600 \mathrm{C} / \mathrm{cm}^{3}$.

- Suppose we remove enough of the electrons from two spheres of Cu so that there is enough net positive charge on them to suspend one of them over the other. What fraction of the electron charge must we remove?
-The force to lift one of the spheres of copper would be its weight, 0.088 N .
-Radius of a $1 \mathrm{~cm}^{3}=0.62 \mathrm{~cm}$, separation= 2.48 cm Using Coulomb's law, this requires a charge of 7.8×10^{-8} Coulombs.
-This amounts to removing just one valence electron out of every 5.7×10^{12} from each copper sphere.

Pith Ball

Similarity with the gravitational

 force ($1 / \mathrm{r}^{2}$ dependence)$F_{G}=G \frac{M_{1} M_{2}}{r^{2}} \quad G=7 \times 10^{-11} \frac{N m^{2}}{\mathrm{~kg}^{2}}$
$1 \mathrm{~kg} \longrightarrow \longrightarrow \longrightarrow$

$$
\mathrm{r}=1 \mathrm{~m} \quad \mathrm{~F}_{\mathrm{G}}=7 \times 10^{-11} \mathrm{~N}
$$

$$
F_{e}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \quad k_{e}=9 \times 10^{9} \frac{N m^{2}}{C^{2}}
$$

$$
r=1 \mathrm{~m}
$$

$\mathrm{F}_{\mathrm{e}}=9 \times 10^{9} \mathrm{~N}$
10^{20} times more than F_{G}

Two 0.2 g spheres each carrying charge +q are suspended from a 30 cm thread make an angle of 5^{0} from the vertical direction. Find q.

Electrical Force

$$
F_{e}=\frac{k q^{2}}{r^{2}}=T \sin \theta
$$

relations $m g=T \cos \theta \quad r=2 L \sin \theta$

$$
q=\sqrt{\frac{m g \tan \theta}{k}}(2 L \sin \theta)=\sqrt{\frac{\left(0.2 \times 10^{-3}\right)(9.8) \tan (5)}{9 \times 10^{9}}}[2(0.3)(\sin (5))]=7.2 \times 10^{-9} \mathrm{C}
$$

Force between several point charges Superposition principle- Forces Add Independently

Force acting on q3 $\vec{F}=\overrightarrow{F_{13}}+\overrightarrow{F_{23}}$
Net force $=$ vector sum of forces

Suppose you had a charge q at the center of a square having Charges of q at each corner. What is the force on the charge In the center?

Two charges are in a line. $q_{1}=-1 \mu C, q_{2}=2 \mu C$ Is there a position along the line through the centers where the force on $\mathrm{a}+$ charge, q_{3} is zero?
Is it in the A, B or C region?

It must be in the A region. The force from the smaller -charge can be increased by a smaller distance

$$
\begin{array}{ll}
\left|F_{13}\right|=\left|F_{23}\right| & x=\frac{\sqrt{\left|q_{1}\right|}}{\sqrt{\left|q_{2}\right|}-\sqrt{\left|q_{1}\right|}} r_{0}=\frac{\sqrt{1}}{\sqrt{2}-\sqrt{1}} r_{0}=2.41 r_{0} \\
\frac{k_{e}\left|q_{1}\right|\left|q_{3}\right|}{x^{2}}=\frac{k_{e}\left|q_{2}\right|\left|q_{3}\right|}{\left(r_{0}+x\right)^{2}} & r_{0}+x=3.41 r_{o} \\
\left(r_{0}+x\right)^{2}\left|q_{1}\right|=x^{2}\left|q_{2}\right| & \\
\left(r_{0}+x\right) \sqrt{\left|q_{1}\right|}=x \sqrt{\left|q_{2}\right|} &
\end{array}
$$

Three charges are placed a the corners of a square with the length of each side $=2.0 \mathrm{~cm}$. Find the force on $q 3$. $q 3=-2 \times 10^{-6} \mathrm{C} \quad q 1=q 2=1 \times 10^{-6} \mathrm{C}$

Forces acting on q3

$$
\begin{gathered}
\mathrm{F}_{13}= \\
\mathrm{F}_{23}= \\
\mathrm{F}_{3}=
\end{gathered}
$$

$$
\begin{array}{ll}
r_{23}^{2}=r_{13}^{2}+r_{12}^{2} & F_{13}=\frac{k_{e} q_{1} q_{3}}{r_{13}^{2}}=\frac{9 \times 10^{9}\left(10^{-6}\right)\left(2 \times 10^{-6}\right)}{\left(2 \times 10^{-2}\right)^{2}}=45 \mathrm{~N} \\
r_{23}^{2}=2 r_{13}^{2} & F_{23}=\frac{k_{e} q_{2} q_{3}}{r_{23}^{2}}=\frac{9 \times 10^{9}\left(10^{-6}\right)\left(2 \times 10^{-6}\right)}{2\left(2 \times 10^{-2}\right)^{2}}=22.5 \mathrm{~N} \\
r_{0}=\sqrt{2} r_{1} &
\end{array}
$$

Solve
Find x and y components.
Consider only the relative magnitudes Ignore the minus sign

$$
\begin{aligned}
& F_{3} \quad F_{23}=22.5 \mathrm{~N} \\
& F_{3}=\sqrt{F_{3 x}^{2}+F_{3 y}^{2}} \\
& F_{3 x}=45+22.5(\cos 45)=61 \mathrm{~N} \\
& F_{3 y}=22.5(\sin 45)=16 \mathrm{~N} \\
& F_{3}=\sqrt{61^{2}+16^{2}}=63 \mathrm{~N}
\end{aligned}
$$

Example 15.3 Where is the resultant force zero?

Two charges are in a line
$q_{1}=15 \mu \mathrm{C}, \mathrm{q}_{2}=6.0 \mu \mathrm{C}$ a negative charge q_{3} must be placed in between them at a position where the net force is zero. Where should it be placed?
closer to q_{1} or q_{2} ?

Magnitudes of forces are equal

$$
\begin{array}{c|c|c}
\mathrm{F}_{13}=F_{23} & \frac{x^{2}}{(2-x)^{2}}=\frac{q_{2}}{q_{1}} & x=\frac{2 \alpha}{1+\alpha}=\frac{2(0.63)}{1+0.63}=0.77 \\
\frac{k q_{1} q_{3}}{(2-x)^{2}}=\frac{\mathrm{kq}_{2} q_{3}}{x^{2}} & \mathrm{~m} \\
\frac{q_{1}}{(2-x)^{2}}=\frac{q_{2}}{x^{2}} & \frac{x}{2-x}=\sqrt{\frac{q_{2}}{q_{1}}}=\sqrt{\frac{6}{15}}=0.63=\alpha & 2-x=2-0.77=1.23 \mathrm{~m}
\end{array}
$$

