PHYSICS 1B - Fall 2007

Electricity \& Magnetism

Professor Brian Keating
SERF Building. Room 333

16.1 PART 2 \& 16.2 ELECTRIC POTENTIAL (CONTINUED)

Quiz grades: on the web by 3 digit number Email jkaufman@physics.ucsd.edu
If you DON'T know your 3 digit number.
Average was an 8 with a standard deviation of 2 .

3 charges of $1 \times 10^{-9} \mathrm{C}$ are placed at the corners of a equilateral triangle Each side of the triangle has a length of 1.0 cm . Find the work needed to bring the charges together from a long distance away.

PE due to Coulomb interaction
How many interactions? 3

$$
\begin{aligned}
& \mathrm{PE}=\mathrm{PE}_{12}+\mathrm{PE}_{13}+\mathrm{PE}_{23} \\
& P E=3 \frac{k_{e} q^{2}}{r} \\
& P E=3 \frac{9 \times 10^{9}\left(1 \times 10^{-9}\right)^{2}}{(0.01)^{2}}=2.7 \times 10^{-4} \mathrm{~J}
\end{aligned}
$$

Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . The Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at A .

What is the potential at A ?

Potential is a scalar

Two charges of $+q$ each are placed at corners of an equilateral triangle, with sides of 10 cm . If the Electric field due to each charge is $100 \mathrm{~V} / \mathrm{m}$ at the A find the potential at A
V at A due to each charge

$$
\begin{aligned}
& E=\frac{k_{e} q}{r^{2}} \\
& V=\frac{k_{e} q}{r} \\
& \frac{E}{V}=\frac{1}{r} \\
& V=E r=100(0.1)=10 \mathrm{~V}
\end{aligned}
$$

$\mathrm{V}_{\text {total }}=\mathrm{V}_{\mathrm{BA}}+\mathrm{V}_{\mathrm{CA}}=2 \mathrm{~V}=20 \mathrm{~V}$
Potential is a scalar

The following charges are brought together from a large distance away.

How many interactions?

How many positive?
How many negative?

Write your answer as "123" for example

The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)

How many interactions?

How many positive?
How many negative? 2
What is the total change in PE?

$$
\begin{aligned}
& P E=P E_{12}+P E_{13}+P E_{23} \\
& P E=P E_{0}-2 P E_{0}=-P E_{0}=-\frac{k_{e} q^{2}}{a}
\end{aligned}
$$

STABLE

Which of the charge distributions is the most stable? (has the lowest PE)

$$
P E_{0}=\frac{k_{e} q^{2}}{a}
$$

A. This one

$$
\begin{aligned}
& \mathrm{PE}_{0} \\
& \mathrm{PE}_{0} / \sqrt{2}
\end{aligned}
$$

$$
+2 \quad-2
$$

$$
-2
$$

(1) Total PE $-\frac{2}{\sqrt{2}} P E_{0}=-1.4 P E_{0}$

B. This one STABLE
-4
+2
$\left(-4+\frac{2}{\sqrt{2}}\right) P E_{o}=-2.6 P E_{0}$

Potential energy due to 2 point charges

$$
P E=q_{1} V_{2}=q_{2} V_{1}
$$

(91) a_{2}

$$
\begin{aligned}
& P E=\frac{k_{e} q_{1} q_{2}}{r} \\
& P E=0 \quad \text { at } r=\infty
\end{aligned}
$$

Potential energy and Potential are Scalar (not Vector) quantities

3 charges of $1 \times 10^{-9} \mathrm{C}$ are placed at the corners of a equilateral triangle Each side of the triangle has a length of 1.0 cm . Find the work needed to bring the charges together from a long distance away.

PE due to Coulomb interaction
How many interactions? 3

$$
\begin{aligned}
& \mathrm{PE}=\mathrm{PE}_{12}+P \mathrm{E}_{13}+P \mathrm{E}_{23} \\
& P E=3 \frac{k_{e} q^{2}}{r} \\
& P E=3 \frac{9 \times 10^{9}\left(1 \times 10^{-9}\right)^{2}}{(0.01)^{2}}=2.7 \times 10^{-4} \mathrm{~J}
\end{aligned}
$$

Unstable compared to infinite distance

The following charges are brought together from a large distance away. What is the change in PE? Is the charge distribution stable? (i.e. does it have a negative PE)

How many interactions?
How many positive?
How many negative? 2
What is the total change in PE?

$$
\begin{aligned}
& P E=P E_{12}+P E_{13}+P E_{23} \\
& P E=P E_{0}-2 P E_{0}=-P E_{0}=-\frac{k_{e} q^{2}}{a}
\end{aligned}
$$

STABLE compared to infinite distance

Which of the charge distributions is the most stable? (has the lowest PE)

16.2 Equipotentials

Equipotential surfaces

Equipotential Surface - positions in space at which the electrical potentials are equal

Example 1- A sphere centered around a point charge

Every point on the surface of the sphere of radius r has the same potential

$$
\mathrm{V}=\frac{\mathrm{k}_{\mathrm{e}} \mathrm{q}}{\mathrm{r}}
$$

The surface of the sphere is an equipotential surface

Equipotential surface-

Example 2: a charged conductor
The surface of a conductor is an equipotential surface.

equipotential
E field is perpendicular to the surface.
Component of $E=0$ parallel to the surface

$$
\Delta \mathrm{V}=\mathrm{Ed}=0
$$

Thus, No change in potential along the surface

The interior of the conductor is an equipotential and at the same potential as the surface.

$\mathrm{E}=0$ in the conductor
Thus, the potential doesn't change from the surface potential

The equipotential surfaces are perpendicular to E field lines.

Equipotential lines: point charge

Equipotential lines: dipole

> A. solid
B. dashed

Draw a sketch of the equipotential surfaces for a electric dipole $(+q,-q)$ in a plane through both charges

Suppose the two charges are 10 cm apart and the equipotential surfaces are as labeled estimate the E field between the two charges.
$\mathrm{V}=0$

Rutherford Scattering experiment
Determination of the size of the nucleus
a particle He nucleus
$\mathrm{q}=+2 \mathrm{e}$
$\mathrm{m}=6.64 \times 10^{-27} \mathrm{~kg}$
$\mathrm{v}=2.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$

recoil
closest approach
$\Delta K E=-\triangle P E$
gold foil
gold nuclei

$$
Q=+79 e
$$

$$
\mathrm{d}=\frac{2 \mathrm{k}_{\mathrm{e}} \mathrm{qQ}}{\mathrm{mv}^{2}}=\frac{2\left(9 \times 10^{9}\right)(2)(79)\left(1.6 \times 10^{-19}\right)^{2}}{6.64 \times 10^{-27}\left(2 \times 10^{7}\right)^{2}}
$$

$$
\mathrm{d}=2.7 \times 10^{-14} \mathrm{~m}
$$

nuclear size $<\mathrm{d}$, much smaller than size of an atom $\sim 0.3 \times 10^{-9} \mathrm{~m}$

Parallel plate capacitor

FIELD LINES IN BLACK (VECTORS) POTENTIAL CONTOURS IN RED
(NO ARROWS, BECAUSE NOT A VECTOR)

Deflection of an electron beam in an electric field

Calculation - velocity, acceleration - Next Slide: calculate the angle the electron exits at...

An electron beam passes through two parallel plates of a length 10 cm having an electric field of E.
The initial velocity of the electron is $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Find the angle through which the beam is deflected.

$$
\mathrm{L}=10 \mathrm{~cm}
$$

e^{-}
$v_{x}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
F & =q E=m a \\
v_{y} & =a t=\frac{F}{m} t=\frac{q E}{m} t \\
t & =\frac{L}{v_{x}} \\
v_{y} & =\frac{q E}{m}\left(\frac{L}{v_{x}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=\frac{v_{y}}{v_{x}}=\frac{q E L}{v_{x}^{2} m} \\
& \theta=\tan ^{-1}\left(\frac{q E L}{v_{x}^{2} m}\right)=\tan ^{-1}\left(\frac{1.6 \times 10^{-19}(1000)(0.1)}{\left(10^{7}\right)^{2}\left(9 \times 10^{-31}\right)}\right)=10^{\circ}
\end{aligned}
$$

