171/271 HW4 - fall 2007

- 1. Textbook, Chapter 10: problems 6,7,9,15
- 2. Consider an integrate and fire neuron with reset voltage of -80mv, threshold of -54mv, time constant of 20msec. An external current of size $R_m I_{ext}$ of magnitude 30mv is turned on for a fixed period of time T. Find the range of T over which exactly one spike is generated.
- 3. (271 only) Consider a generalization of the simple integrate-and-fire neuron in which the membrane voltage obeys the nonlinear equation

$$\tau_m \frac{dV}{dt} = a_0 (V - V_r) (V - V_c) + RI_{ext}$$

where $V_c > V_r$ and everytime the voltage reaches a threshold V_{th} , a spike is triggered and V is reset to V_{reset} . Find an implicit equation relating the spiking period to the value of the input current (assumed constant in time)

4. Consider the Morris-Lecar two component neuron model which can be written in the form

$$\frac{du}{dt} = -g_c m_0(u)(u-1) - g_k w(u-u_k) - g_L(u-u_L)$$

$$\frac{dw}{dt} = \frac{\phi}{\tau_w(u)}(w_0(u) - w)$$

with parameters $g_K = 2$, $g_L = .5$, $u_1 = -.01$, $u_2 = .15$. The functions are given by

$$m_0(u) = \frac{1}{2}(1 + \tanh \frac{u - u_1}{u_2})$$

$$w_0(u) = \frac{1}{2}(1 + \tanh \frac{u - u_3}{u_4})$$

$$\tau_w(u) = \frac{1}{\cosh \frac{u - u_3}{2u_4}}$$

a. Draw the nullclines of this system for the case of $\phi = .2$, $g_c = 1.1$, $u_3 = 0$ and $u_4 = .3$

b. Do the same for the alternate case of $\phi = .33$, $g_c = 1$, $u_3 = .1$ and $u_4 = .145$

c. Which of these cases can be expected to be type I (saddle-node rather than Hopf bifurcation)?