
Chapter 5

Calculus of Variations

5.1 Snell’s Law

Warm-up problem: You are standing at point (x1, y1) on the beach and you want to
get to a point (x2, y2) in the water, a few meters offshore. The interface between the
beach and the water lies at x = 0. What path results in the shortest travel time? It
is not a straight line! This is because your speed v1 on the sand is greater than your
speed v2 in the water. The optimal path actually consists of two line segments, as
shown in Fig. 5.1. Let the path pass through the point (0, y) on the interface. Then
the time T is a function of y:

T (y) =
1

v1

√
x2

1 + (y − y1)
2 +

1

v2

√
x2

2 + (y2 − y)2 . (5.1)

To find the minimum time, we set

dT

dy
= 0 =

1

v1

y − y1√
x2

1 + (y − y1)
2

+
1

v2

y2 − y√
x2

2 + (y2 − y)2

=
sin θ1

v1

− sin θ2

v2

. (5.2)

Thus, the optimal path satisfies

sin θ1

sin θ2

=
v1

v2

, (5.3)

which is known as Snell’s Law.

Snell’s Law is familiar from optics, where the speed of light in a polarizable medium
is written v = c/n, where n is the index of refraction. In terms of n,

n1 sin θ1 = n2 sin θ2 . (5.4)
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Figure 5.1: The shortest path between (x1, y1) and (x2, y2) is not a straight line, but
rather two successive line segments of different slope.

If there are several interfaces, Snell’s law holds at each one, so that

ni sin θi = ni+1 sin θi+1 , (5.5)

at the interface between media i and i + 1.

Now let us imagine that there are many such interfaces between regions of very
small thicknesses. We can then regard n and θ as continuous functions of the coordi-
nate x. The differential form of Snell’s law is

n(x) sin
(
θ(x)

)
= n(x + dx) sin

(
θ(x + dx)

)
= (n + n′ dx)

(
sin θ + cos θ θ′ dx

)
= n sin θ +

(
n′ sin θ + n cos θ θ′

)
dx . (5.6)

Thus,

ctn θ
dθ

dx
= − 1

n

dn

dx
. (5.7)

If we write the path as y = y(x), then tan θ = y′, and

θ′ =
d

dx
tan−1 y′ =

y′′

1 + y′2
, (5.8)

which yields

− 1

y′
· y′′

1 + y′2
=

n′

n
. (5.9)

2



Figure 5.2: The path of shortest length is composed of three line segments. The
relation between the angles at each interface is governed by Snell’s Law.

This is a differential equation that y(x) must satisfy if the functional

T
[
y(x)

]
=

∫
ds

v
=

1

c

x2∫
x1

dx n(x)

√
1 + y′2 (5.10)

is to be minimized.

5.2 Functions and Functionals

A function is a mathematical object which takes a real (or complex) variable, or
several such variables, and returns a real (or complex) number. A functional is a
mathematical object which takes an entire function and returns a number. In the
case at hand, we have

T
[
y(x)

]
=

x2∫
x1

dx L(y, y′, x) , (5.11)

where the function L(y, y′, x) is given by

L(y, y′, x) = c−1 n(x)

√
1 + y′2 . (5.12)

Here n(x) is a given function characterizing the medium, and y(x) is the path whose
time is to be evaluated.
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Figure 5.3: A path y(x) and its variation y(x) + δy(x).

In ordinary calculus, we extremize a function f(x) by demanding that f not change
to lowest order when we change x→ x + dx:

f(x + dx) = f(x) + f ′(x) dx + 1
2
f ′′(x) (dx)2 + . . . . (5.13)

We say that x = x∗ is an extremum when f ′(x∗) = 0.

For a functional, the first functional variation is obtained by sending y(x) →
y(x) + δy(x), and extracting the variation in the functional to order δy. Thus, we
compute

T
[
y(x) + δy(x)

]
=

x2∫
x1

dx L(y + δy, y′ + δy′, x)

=

x2∫
x1

dx

{
L +

∂L

∂y
δy +

∂L

∂y′
δy′ +O

(
(δy)2

)}

= T
[
y(x)

]
+

x2∫
x1

dx

{
∂L

∂y
δy +

∂L

∂y′
d

dx
δy

}

= T
[
y(x)

]
+

x2∫
x1

dx

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy +

∂L

∂y′
δy

∣∣∣∣∣
x2

x1

. (5.14)

Now one very important thing about the variation δy(x) is that it must vanish at
the endpoints: δy(x1) = δy(x2) = 0. This is because the space of functions under
consideration satisfy fixed boundary conditions y(x1) = y1 and y(x2) = y2. Thus, the
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last term in the above equation vanishes, and we have

δT =

x2∫
x1

dx

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy . (5.15)

We say that the first functional derivative of T with respect to y(x) is

δT

δy(x)
=

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
x

, (5.16)

where the subscript indicates that the expression inside the square brackets is to
be evaluated at x. The functional T

[
y(x)

]
is extremized when its first functional

derivative vanishes, which results in a differential equation for y(x),

∂L

∂y
− d

dx

(
∂L

∂y′

)
= 0 , (5.17)

known as the Euler-Lagrange equation. Since L is independent of y, we have

0 =
d

dx

(
∂L

∂y′

)
=

1

c

d

dx

[
n y′√
1 + y′2

]

=
n′

c

y′√
1 + y′2

+
n

c

y′′(
1 + y′2

)3/2
. (5.18)

We thus recover the second order equation in 5.9. However, note that the above
equation directly gives

n(x) sin θ(x) = const. , (5.19)

which follows from the relation y′ = tan θ. For y(x) we obtain

n2 y′2

1 + y′2
≡ α2 = const. ⇒ dy

dx
=

α√
n2(x)− α2

. (5.20)

In general, we may expand a functional F [y + δy] in a functional Taylor series ,

F [y + δy] = F [y] +

∫
dx1 K1(x1) δy(x1) + 1

2 !

∫
dx1

∫
dx2 K2(x1, x2) δy(x1) δy(x2)

+ 1
3 !

∫
dx1

∫
dx2

∫
dx3 K3(x1, x2, x3) δy(x1) δy(x2) δy(x3) + . . . (5.21)

and we write

Kn(x1, . . . , xn) ≡ δnF

δy(x1) · · · δy(xn)
(5.22)

for the nth functional derivative.
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5.3 Examples from the Calculus of Variations

Here we present three useful examples of variational calculus as applied to problems
in mathematics and physics.

5.3.1 Example 1 : Minimal Surface of Revolution

Consider a surface formed by rotating the function y(x) about the x-axis. The area
is then

A
[
y(x)

]
=

x2∫
x1

dx 2πy

√
1 +

(
dy

dx

)2

, (5.23)

and is a functional of the curve y(x). Thus we can define L(y, y′) = 2πy
√

1 + y′2 and
make the identification y(x) ↔ q(t). We can then apply what we have derived for
the mechanical action, with L = L(q, q̇, t), mutatis mutandis. Thus, the equation of
motion is

d

dx

(
∂L

∂y′

)
=

∂L

∂y
, (5.24)

which is a second order ODE for y(x). Rather than treat the second order equation,
though, we can integrate once to obtain a first order equation, by noticing that

d

dx

[
y′

∂L

∂y′
− L

]
= y′′

∂L

∂y′
+ y′

d

dx

(
∂L

∂y′

)
− ∂L

∂y′
y′′ − ∂L

∂y
y′ − ∂L

∂x

= y′
[

d

dx

(
∂L

∂y′

)
− ∂L

∂y

]
− ∂L

∂x
. (5.25)

In the second line above, the term in square brackets vanishes, thus

J = y′
∂L

∂y′
− L ⇒ dJ

dx
= −∂L

∂x
, (5.26)

and when L has no explicit x-dependence, J is conserved. One finds

J = 2πy · y′2√
1 + y′2

− 2πy

√
1 + y′2 = − 2πy√

1 + y′2
. (5.27)

Solving for y′,

dy

dx
= ±

√(
2πy

J

)2

− 1 , (5.28)
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which may be integrated with the substitution y = J
2π

cosh χ, yielding

y(x) = b cosh

(
x− a

b

)
, (5.29)

where a and b = J
2π

are constants of integration. Note there are two such constants,
as the original equation was second order. This shape is called a catenary. As we
shall later find, it is also the shape of a uniformly dense rope hanging between two
supports, under the influence of gravity. To fix the constants a and b, we invoke the
boundary conditions y(x1) = y1 and y(x2) = y2.

Consider the case where −x1 = x2 ≡ x0 and y1 = y2 ≡ y0. Then clearly a = 0,
and we have

y0 = b cosh
(x0

b

)
⇒ γ = κ−1 cosh κ , (5.30)

with γ ≡ y0/x0 and κ ≡ x0/b. One finds that for any γ > 1.5089 there are two
solutions, one of which is a local minimum and one of which is a saddle point of
A[y(x)]. The solution with the smaller value of κ (i.e. the larger value of sech κ)
yields the smaller value of A, as shown in Fig. 5.4. Note that

y

y0

=
cosh(x/b)

cosh(x0/b)
, (5.31)

so y(x = 0) = y0 sech(x0/b).

When extremizing functions that are defined over a finite or semi-infinite interval,
one must take care to evaluate the function at the boundary, for it may be that the
boundary yields a global extremum even though the derivative may not vanish there.
Similarly, when extremizing functionals, one must investigate the functions at the
boundary of function space. In this case, such a function would be the discontinuous
solution, with

y(x) =



y1 if x = x1

0 if x1 < x < x2

y2 if x = x2 .

(5.32)

This solution corresponds to a surface consisting of two discs of radii y1 and y2, joined
by an infinitesimally thin thread. The area functional evaluated for this particular
y(x) is clearly A = π(y2

1 + y2
2). In Fig. 5.4, we plot A/2πy2

0 versus the parameter
γ = y0/x0. For γ > γc ≈ 1.564, one of the catenary solutions is the global minimum.
For γ < γc, the minimum area is achieved by the discontinuous solution.
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Figure 5.4: Minimal surface solution, with y(x) = b cosh(x/b) and y(x0) = y0. Top
panel: A/2πy2

0 vs. y0/x0. Bottom panel: sech(x0/b) vs. y0/x0. The blue curve
corresponds to a local minimum of A[y(x), and the red curve to a saddle point.

Note that the functional derivative,

K1(x) =
δA

δy(x)
=

{
∂L

∂y
− d

dx

(
∂L

∂y′

)}
=

2π
(
1 + y′2 − yy′′

)
(1 + y′2)3/2

, (5.33)

indeed vanishes for the catenary solutions, but does not vanish for the discontinuous
solution, where K1(x) = 2π throughout the interval (−x0, x0). Since y = 0 on this
interval, y cannot be decreased. The fact that K1(x) > 0 means that increasing y
will result in an increase in A, so the boundary value for A, which is 2πy2

0, is indeed
a local minimum.

We furthermore see in Fig. 5.4 that for γ < γ∗ ≈ 1.5089 the local minimum
and saddle are no longer present. This is the familiar saddle-node bifurcation, here
in function space. Thus, for γ ∈ [0, γ∗) there are no extrema of A[y(x)], and the
minimum area occurs for the discontinuous y(x) lying at the boundary of function
space. For γ ∈ (γ∗, γc), two extrema exist, one of which is a local minimum and the
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other a saddle point. Still, the area is minimized for the discontinuous solution. For
γ ∈ (γc,∞), the local minimum is the global minimum, and has smaller area than for
the discontinuous solution.

5.3.2 Example 2 : Geodesic on a Surface of Revolution

We use cylindrical coordinates (ρ, φ, z) on the surface z = z(ρ). Thus,

ds2 = dρ2 + ρ2 dφ2 + dx2

=
{

1 +
[
z′(ρ)

]2
}

dρ + ρ2 dφ2 , (5.34)

and the distance functional D
[
φ(ρ)

]
is

D
[
φ(ρ)

]
=

ρ2∫
ρ1

dρL(φ, φ′, ρ) , (5.35)

where

L(φ, φ′, ρ) =

√
1 + z′2(ρ) + ρ2 φ′2(ρ) . (5.36)

The Euler-Lagrange equation is

∂L

∂φ
− d

dρ

(
∂L

∂φ′

)
= 0 ⇒ ∂L

∂φ′ = const. (5.37)

Thus,
∂L

∂φ′ =
ρ2 φ′√

1 + z′2 + ρ2 φ′2
= a , (5.38)

where a is a constant. Solving for φ′, we obtain

dφ =
a

√
1 +

[
z′(ρ)

]2

ρ
√

ρ2 − a2
dρ , (5.39)

which we must integrate to find φ(ρ), subject to boundary conditions φ(ρi) = φi, with
i = 1, 2.

On a cone, z(ρ) = λρ, and we have

dφ = a
√

1 + λ2
dρ

ρ
√

ρ2 − a2
=
√

1 + λ2 d tan−1

√
ρ2

a2
− 1 , (5.40)

which yields

φ(ρ) = β +
√

1 + λ2 tan−1

√
ρ2

a2
− 1 , (5.41)
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which is equivalent to

ρ cos

(
φ− β√
1 + λ2

)
= a . (5.42)

The constants β and a are determined from φ(ρi) = φi.

5.3.3 Example 3 : Brachistochrone

Problem: find the path between (x1, y1) and (x2, y2) which a particle sliding friction-
lessly and under constant gravitational acceleration will traverse in the shortest time.
To solve this we first must invoke some elementary mechanics. Assuming the particle
is released from (x1, y1) at rest, energy conservation says

1
2
mv2 −mgy = mgy1 . (5.43)

Then the time, which is a functional of the curve y(x), is

T
[
y(x)

]
=

x2∫
x1

ds

v
=

1√
2g

x2∫
x1

dx

√
1 + y′2

y1 − y
(5.44)

≡
x2∫

x1

dx L(y, y′, x) ,

with

L(y, y′, x) =

√
1 + y′2

2g(y1 − y)
. (5.45)

Since L is independent of x, eqn. 5.25, we have that

J = y′
∂L

∂y′
− L = −

[
2g (y1 − y)

(
1 + y′

2)]−1/2

(5.46)

is conserved. This yields

dx = −
√

y1 − y

2a− y1 + y
dy , (5.47)

with a = (4gJ 2)−1. This may be integrated parametrically, writing

y1 − y = 2a sin2(1
2
θ) ⇒ dx = 2a sin2(1

2
θ) dθ , (5.48)

which results in the parametric equations

x− x1 = a
(
θ − sin θ

)
(5.49)

y − y1 = −a (1− cos θ) . (5.50)

This curve is known as a cycloid.
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Figure 5.5: For shallow water waves, v =
√

gh. To minimize the propagation time
from a source to the shore, the waves break parallel to the shoreline.

5.3.4 Ocean Waves

Surface waves in fluids propagate with a definite relation between their angular fre-
quency ω and their wavevector k = 2π/λ, where λ is the wavelength. The dispersion
relation is a function ω = ω(k). The group velocity of the waves is then v(k) = dω/dk.

In a fluid with a flat bottom at depth h, the dispersion relation turns out to be

ω(k) =
√

gk tanh kh ≈


√

gh k shallow (kh� 1)

√
gk deep (kh� 1) .

(5.51)

Suppose we are in the shallow case, where the wavelength λ is significantly greater
than the depth h of the fluid. This is the case for ocean waves which break at
the shore. The phase velocity and group velocity are then identical, and equal to
v(h) =

√
gh. The waves propagate more slowly as they approach the shore.

Let us choose the following coordinate system: x represents the distance parallel
to the shoreline, y the distance perpendicular to the shore (which lies at y = 0),
and h(y) is the depth profile of the bottom. We assume h(y) to be a slowly varying
function of y which satisfies h(0) = 0. Suppose a disturbance in the ocean at position
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(x2, y2) propagates until it reaches the shore at (x1, y1 = 0). The time of propagation
is

T
[
y(x)

]
=

∫
ds

v
=

x2∫
x1

dx

√
1 + y′2

g h(y)
. (5.52)

We thus identify the integrand

L(y, y′, x) =

√
1 + y′2

g h(y)
. (5.53)

As with the brachistochrone problem, to which this bears an obvious resemblance, L
is cyclic in the independent variable x, hence

J = y′
∂L

∂y′
− L = −

[
g h(y)

(
1 + y′

2)]−1/2

(5.54)

is constant. Solving for y′(x), we have

tan θ =
dy

dx
=

√
a

h(y)
− 1 , (5.55)

where a = (gJ )−1 is a constant, and where θ is the local slope of the function y(x).
Thus, we conclude that near y = 0, where h(y) → 0, the waves come in parallel to
the shoreline. If h(y) = αy has a linear profile, the solution is again a cycloid, with

x(θ) = b (θ − sin θ) (5.56)

y(θ) = b (1− cos θ) , (5.57)

where b = 2a/α and where the shore lies at θ = 0. Expanding in a Taylor series in θ
for small θ, we may eliminate θ and obtain y(x) as

y(x) =
(

9
2

)1/3
b1/3 x2/3 + . . . . (5.58)

A tsunami is a shallow water wave that manages propagates in deep water. This
requires λ > h, as we’ve seen, which means the disturbance must have a very long
spatial extent out in the open ocean, where h ∼ 10 km. An undersea earthquake is
the only possible source; the characteristic length of earthquake fault lines can be
hundreds of kilometers. If we take h = 10 km, we obtain v =

√
gh ≈ 310 m/s or

1100 km/hr. At these speeds, a tsunami can cross the Pacific Ocean in less than a
day.

As the wave approaches the shore, it must slow down, since v =
√

gh is diminishing.
But energy is conserved, which means that the amplitude must concomitantly rise.
In extreme cases, the water level rise at shore may be 20 meters or more.
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