Chapter 5

Calculus of Variations

5.1 Snell's Law

Warm-up problem: You are standing at point $\left(x_{1}, y_{1}\right)$ on the beach and you want to get to a point $\left(x_{2}, y_{2}\right)$ in the water, a few meters offshore. The interface between the beach and the water lies at $x=0$. What path results in the shortest travel time? It is not a straight line! This is because your speed v_{1} on the sand is greater than your speed v_{2} in the water. The optimal path actually consists of two line segments, as shown in Fig. 5.1. Let the path pass through the point $(0, y)$ on the interface. Then the time T is a function of y :

$$
\begin{equation*}
T(y)=\frac{1}{v_{1}} \sqrt{x_{1}^{2}+\left(y-y_{1}\right)^{2}}+\frac{1}{v_{2}} \sqrt{x_{2}^{2}+\left(y_{2}-y\right)^{2}} . \tag{5.1}
\end{equation*}
$$

To find the minimum time, we set

$$
\begin{align*}
\frac{d T}{d y}=0 & =\frac{1}{v_{1}} \frac{y-y_{1}}{\sqrt{x_{1}^{2}+\left(y-y_{1}\right)^{2}}}+\frac{1}{v_{2}} \frac{y_{2}-y}{\sqrt{x_{2}^{2}+\left(y_{2}-y\right)^{2}}} \\
& =\frac{\sin \theta_{1}}{v_{1}}-\frac{\sin \theta_{2}}{v_{2}} . \tag{5.2}
\end{align*}
$$

Thus, the optimal path satisfies

$$
\begin{equation*}
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}} \tag{5.3}
\end{equation*}
$$

which is known as Snell's Law.
Snell's Law is familiar from optics, where the speed of light in a polarizable medium is written $v=c / n$, where n is the index of refraction. In terms of n,

$$
\begin{equation*}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} . \tag{5.4}
\end{equation*}
$$

Figure 5.1: The shortest path between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is not a straight line, but rather two successive line segments of different slope.

If there are several interfaces, Snell's law holds at each one, so that

$$
\begin{equation*}
n_{i} \sin \theta_{i}=n_{i+1} \sin \theta_{i+1} \tag{5.5}
\end{equation*}
$$

at the interface between media i and $i+1$.
Now let us imagine that there are many such interfaces between regions of very small thicknesses. We can then regard n and θ as continuous functions of the coordinate x. The differential form of Snell's law is

$$
\begin{align*}
n(x) \sin (\theta(x)) & =n(x+d x) \sin (\theta(x+d x)) \\
& =\left(n+n^{\prime} d x\right)\left(\sin \theta+\cos \theta \theta^{\prime} d x\right) \\
& =n \sin \theta+\left(n^{\prime} \sin \theta+n \cos \theta \theta^{\prime}\right) d x \tag{5.6}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\operatorname{ctn} \theta \frac{d \theta}{d x}=-\frac{1}{n} \frac{d n}{d x} \tag{5.7}
\end{equation*}
$$

If we write the path as $y=y(x)$, then $\tan \theta=y^{\prime}$, and

$$
\begin{equation*}
\theta^{\prime}=\frac{d}{d x} \tan ^{-1} y^{\prime}=\frac{y^{\prime \prime}}{1+y^{\prime 2}}, \tag{5.8}
\end{equation*}
$$

which yields

$$
\begin{equation*}
-\frac{1}{y^{\prime}} \cdot \frac{y^{\prime \prime}}{1+y^{\prime 2}}=\frac{n^{\prime}}{n} \tag{5.9}
\end{equation*}
$$

Figure 5.2: The path of shortest length is composed of three line segments. The relation between the angles at each interface is governed by Snell's Law.

This is a differential equation that $y(x)$ must satisfy if the functional

$$
\begin{equation*}
T[y(x)]=\int \frac{d s}{v}=\frac{1}{c} \int_{x_{1}}^{x_{2}} d x n(x) \sqrt{1+y^{\prime 2}} \tag{5.10}
\end{equation*}
$$

is to be minimized.

5.2 Functions and Functionals

A function is a mathematical object which takes a real (or complex) variable, or several such variables, and returns a real (or complex) number. A functional is a mathematical object which takes an entire function and returns a number. In the case at hand, we have

$$
\begin{equation*}
T[y(x)]=\int_{x_{1}}^{x_{2}} d x L\left(y, y^{\prime}, x\right) \tag{5.11}
\end{equation*}
$$

where the function $L\left(y, y^{\prime}, x\right)$ is given by

$$
\begin{equation*}
L\left(y, y^{\prime}, x\right)=c^{-1} n(x) \sqrt{1+y^{\prime 2}} \tag{5.12}
\end{equation*}
$$

Here $n(x)$ is a given function characterizing the medium, and $y(x)$ is the path whose time is to be evaluated.

Figure 5.3: A path $y(x)$ and its variation $y(x)+\delta y(x)$.
In ordinary calculus, we extremize a function $f(x)$ by demanding that f not change to lowest order when we change $x \rightarrow x+d x$:

$$
\begin{equation*}
f(x+d x)=f(x)+f^{\prime}(x) d x+\frac{1}{2} f^{\prime \prime}(x)(d x)^{2}+\ldots \tag{5.13}
\end{equation*}
$$

We say that $x=x^{*}$ is an extremum when $f^{\prime}\left(x^{*}\right)=0$.
For a functional, the first functional variation is obtained by sending $y(x) \rightarrow$ $y(x)+\delta y(x)$, and extracting the variation in the functional to order δy. Thus, we compute

$$
\begin{align*}
T[y(x)+\delta y(x)] & =\int_{x_{1}}^{x_{2}} d x L\left(y+\delta y, y^{\prime}+\delta y^{\prime}, x\right) \\
& =\int_{x_{1}}^{x_{2}} d x\left\{L+\frac{\partial L}{\partial y} \delta y+\frac{\partial L}{\partial y^{\prime}} \delta y^{\prime}+\mathcal{O}\left((\delta y)^{2}\right)\right\} \\
& =T[y(x)]+\int_{x_{1}}^{x_{2}} d x\left\{\frac{\partial L}{\partial y} \delta y+\frac{\partial L}{\partial y^{\prime}} \frac{d}{d x} \delta y\right\} \\
& =T[y(x)]+\int_{x_{1}}^{x_{2}} d x\left[\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)\right] \delta y+\left.\frac{\partial L}{\partial y^{\prime}} \delta y\right|_{x_{1}} ^{x_{2}} \tag{5.14}
\end{align*}
$$

Now one very important thing about the variation $\delta y(x)$ is that it must vanish at the endpoints: $\delta y\left(x_{1}\right)=\delta y\left(x_{2}\right)=0$. This is because the space of functions under consideration satisfy fixed boundary conditions $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$. Thus, the
last term in the above equation vanishes, and we have

$$
\begin{equation*}
\delta T=\int_{x_{1}}^{x_{2}} d x\left[\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)\right] \delta y \tag{5.15}
\end{equation*}
$$

We say that the first functional derivative of T with respect to $y(x)$ is

$$
\begin{equation*}
\frac{\delta T}{\delta y(x)}=\left[\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)\right]_{x} \tag{5.16}
\end{equation*}
$$

where the subscript indicates that the expression inside the square brackets is to be evaluated at x. The functional $T[y(x)]$ is extremized when its first functional derivative vanishes, which results in a differential equation for $y(x)$,

$$
\begin{equation*}
\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)=0 \tag{5.17}
\end{equation*}
$$

known as the Euler-Lagrange equation. Since L is independent of y, we have

$$
\begin{align*}
0=\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right) & =\frac{1}{c} \frac{d}{d x}\left[\frac{n y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right] \\
& =\frac{n^{\prime}}{c} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}+\frac{n}{c} \frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}} . \tag{5.18}
\end{align*}
$$

We thus recover the second order equation in 5.9. However, note that the above equation directly gives

$$
\begin{equation*}
n(x) \sin \theta(x)=\text { const. } \tag{5.19}
\end{equation*}
$$

which follows from the relation $y^{\prime}=\tan \theta$. For $y(x)$ we obtain

$$
\begin{equation*}
\frac{n^{2} y^{\prime 2}}{1+y^{\prime 2}} \equiv \alpha^{2}=\text { const. } \quad \Rightarrow \quad \frac{d y}{d x}=\frac{\alpha}{\sqrt{n^{2}(x)-\alpha^{2}}} \tag{5.20}
\end{equation*}
$$

In general, we may expand a functional $F[y+\delta y]$ in a functional Taylor series,

$$
\begin{align*}
F[y+\delta y] & =F[y]+\int d x_{1} K_{1}\left(x_{1}\right) \delta y\left(x_{1}\right)+\frac{1}{2!} \int d x_{1} \int d x_{2} K_{2}\left(x_{1}, x_{2}\right) \delta y\left(x_{1}\right) \delta y\left(x_{2}\right) \\
& +\frac{1}{3!} \int d x_{1} \int d x_{2} \int d x_{3} K_{3}\left(x_{1}, x_{2}, x_{3}\right) \delta y\left(x_{1}\right) \delta y\left(x_{2}\right) \delta y\left(x_{3}\right)+\ldots \tag{5.21}
\end{align*}
$$

and we write

$$
\begin{equation*}
K_{n}\left(x_{1}, \ldots, x_{n}\right) \equiv \frac{\delta^{n} F}{\delta y\left(x_{1}\right) \cdots \delta y\left(x_{n}\right)} \tag{5.22}
\end{equation*}
$$

for the $n^{\text {th }}$ functional derivative.

5.3 Examples from the Calculus of Variations

Here we present three useful examples of variational calculus as applied to problems in mathematics and physics.

5.3.1 Example 1 : Minimal Surface of Revolution

Consider a surface formed by rotating the function $y(x)$ about the x-axis. The area is then

$$
\begin{equation*}
A[y(x)]=\int_{x_{1}}^{x_{2}} d x 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \tag{5.23}
\end{equation*}
$$

and is a functional of the curve $y(x)$. Thus we can define $L\left(y, y^{\prime}\right)=2 \pi y \sqrt{1+y^{\prime 2}}$ and make the identification $y(x) \leftrightarrow q(t)$. We can then apply what we have derived for the mechanical action, with $L=L(q, \dot{q}, t)$, mutatis mutandis. Thus, the equation of motion is

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)=\frac{\partial L}{\partial y} \tag{5.24}
\end{equation*}
$$

which is a second order ODE for $y(x)$. Rather than treat the second order equation, though, we can integrate once to obtain a first order equation, by noticing that

$$
\begin{align*}
\frac{d}{d x}\left[y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L\right] & =y^{\prime \prime} \frac{\partial L}{\partial y^{\prime}}+y^{\prime} \frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)-\frac{\partial L}{\partial y^{\prime}} y^{\prime \prime}-\frac{\partial L}{\partial y} y^{\prime}-\frac{\partial L}{\partial x} \\
& =y^{\prime}\left[\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)-\frac{\partial L}{\partial y}\right]-\frac{\partial L}{\partial x} \tag{5.25}
\end{align*}
$$

In the second line above, the term in square brackets vanishes, thus

$$
\begin{equation*}
\mathcal{J}=y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L \quad \Rightarrow \quad \frac{d \mathcal{J}}{d x}=-\frac{\partial L}{\partial x} \tag{5.26}
\end{equation*}
$$

and when L has no explicit x-dependence, \mathcal{J} is conserved. One finds

$$
\begin{equation*}
\mathcal{J}=2 \pi y \cdot \frac{y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}-2 \pi y \sqrt{1+y^{\prime 2}}=-\frac{2 \pi y}{\sqrt{1+y^{\prime 2}}} \tag{5.27}
\end{equation*}
$$

Solving for y^{\prime},

$$
\begin{equation*}
\frac{d y}{d x}= \pm \sqrt{\left(\frac{2 \pi y}{\mathcal{J}}\right)^{2}-1} \tag{5.28}
\end{equation*}
$$

which may be integrated with the substitution $y=\frac{\mathcal{J}}{2 \pi} \cosh \chi$, yielding

$$
\begin{equation*}
y(x)=b \cosh \left(\frac{x-a}{b}\right) \tag{5.29}
\end{equation*}
$$

where a and $b=\frac{\mathcal{J}}{2 \pi}$ are constants of integration. Note there are two such constants, as the original equation was second order. This shape is called a catenary. As we shall later find, it is also the shape of a uniformly dense rope hanging between two supports, under the influence of gravity. To fix the constants a and b, we invoke the boundary conditions $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$.

Consider the case where $-x_{1}=x_{2} \equiv x_{0}$ and $y_{1}=y_{2} \equiv y_{0}$. Then clearly $a=0$, and we have

$$
\begin{equation*}
y_{0}=b \cosh \left(\frac{x_{0}}{b}\right) \quad \Rightarrow \quad \gamma=\kappa^{-1} \cosh \kappa \tag{5.30}
\end{equation*}
$$

with $\gamma \equiv y_{0} / x_{0}$ and $\kappa \equiv x_{0} / b$. One finds that for any $\gamma>1.5089$ there are two solutions, one of which is a local minimum and one of which is a saddle point of $A[y(x)]$. The solution with the smaller value of κ (i.e. the larger value of sech κ) yields the smaller value of A, as shown in Fig. 5.4. Note that

$$
\begin{equation*}
\frac{y}{y_{0}}=\frac{\cosh (x / b)}{\cosh \left(x_{0} / b\right)} \tag{5.31}
\end{equation*}
$$

so $y(x=0)=y_{0} \operatorname{sech}\left(x_{0} / b\right)$.
When extremizing functions that are defined over a finite or semi-infinite interval, one must take care to evaluate the function at the boundary, for it may be that the boundary yields a global extremum even though the derivative may not vanish there. Similarly, when extremizing functionals, one must investigate the functions at the boundary of function space. In this case, such a function would be the discontinuous solution, with

$$
y(x)= \begin{cases}y_{1} & \text { if } x=x_{1} \tag{5.32}\\ 0 & \text { if } x_{1}<x<x_{2} \\ y_{2} & \text { if } x=x_{2}\end{cases}
$$

This solution corresponds to a surface consisting of two discs of radii y_{1} and y_{2}, joined by an infinitesimally thin thread. The area functional evaluated for this particular $y(x)$ is clearly $A=\pi\left(y_{1}^{2}+y_{2}^{2}\right)$. In Fig. 5.4, we plot $A / 2 \pi y_{0}^{2}$ versus the parameter $\gamma=y_{0} / x_{0}$. For $\gamma>\gamma_{\mathrm{c}} \approx 1.564$, one of the catenary solutions is the global minimum. For $\gamma<\gamma_{\mathrm{c}}$, the minimum area is achieved by the discontinuous solution.

Figure 5.4: Minimal surface solution, with $y(x)=b \cosh (x / b)$ and $y\left(x_{0}\right)=y_{0}$. Top panel: $A / 2 \pi y_{0}^{2}$ vs. y_{0} / x_{0}. Bottom panel: $\operatorname{sech}\left(x_{0} / b\right)$ vs. y_{0} / x_{0}. The blue curve corresponds to a local minimum of $A[y(x)$, and the red curve to a saddle point.

Note that the functional derivative,

$$
\begin{equation*}
K_{1}(x)=\frac{\delta A}{\delta y(x)}=\left\{\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial y^{\prime}}\right)\right\}=\frac{2 \pi\left(1+y^{\prime 2}-y y^{\prime \prime}\right)}{\left(1+y^{\prime 2}\right)^{3 / 2}} \tag{5.33}
\end{equation*}
$$

indeed vanishes for the catenary solutions, but does not vanish for the discontinuous solution, where $K_{1}(x)=2 \pi$ throughout the interval $\left(-x_{0}, x_{0}\right)$. Since $y=0$ on this interval, y cannot be decreased. The fact that $K_{1}(x)>0$ means that increasing y will result in an increase in A, so the boundary value for A, which is $2 \pi y_{0}^{2}$, is indeed a local minimum.

We furthermore see in Fig. 5.4 that for $\gamma<\gamma_{*} \approx 1.5089$ the local minimum and saddle are no longer present. This is the familiar saddle-node bifurcation, here in function space. Thus, for $\gamma \in\left[0, \gamma_{*}\right)$ there are no extrema of $A[y(x)]$, and the minimum area occurs for the discontinuous $y(x)$ lying at the boundary of function space. For $\gamma \in\left(\gamma_{*}, \gamma_{c}\right)$, two extrema exist, one of which is a local minimum and the
other a saddle point. Still, the area is minimized for the discontinuous solution. For $\gamma \in\left(\gamma_{\mathrm{c}}, \infty\right)$, the local minimum is the global minimum, and has smaller area than for the discontinuous solution.

5.3.2 Example 2: Geodesic on a Surface of Revolution

We use cylindrical coordinates (ρ, ϕ, z) on the surface $z=z(\rho)$. Thus,

$$
\begin{align*}
d s^{2} & =d \rho^{2}+\rho^{2} d \phi^{2}+d x^{2} \\
& =\left\{1+\left[z^{\prime}(\rho)\right]^{2}\right\} d \rho+\rho^{2} d \phi^{2} \tag{5.34}
\end{align*}
$$

and the distance functional $D[\phi(\rho)]$ is

$$
\begin{equation*}
D[\phi(\rho)]=\int_{\rho_{1}}^{\rho_{2}} d \rho L\left(\phi, \phi^{\prime}, \rho\right) \tag{5.35}
\end{equation*}
$$

where

$$
\begin{equation*}
L\left(\phi, \phi^{\prime}, \rho\right)=\sqrt{1+z^{\prime 2}(\rho)+\rho^{2} \phi^{\prime 2}(\rho)} \tag{5.36}
\end{equation*}
$$

The Euler-Lagrange equation is

$$
\begin{equation*}
\frac{\partial L}{\partial \phi}-\frac{d}{d \rho}\left(\frac{\partial L}{\partial \phi^{\prime}}\right)=0 \Rightarrow \frac{\partial L}{\partial \phi^{\prime}}=\text { const. } \tag{5.37}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{\partial L}{\partial \phi^{\prime}}=\frac{\rho^{2} \phi^{\prime}}{\sqrt{1+z^{\prime 2}+\rho^{2} \phi^{\prime 2}}}=a \tag{5.38}
\end{equation*}
$$

where a is a constant. Solving for ϕ^{\prime}, we obtain

$$
\begin{equation*}
d \phi=\frac{a \sqrt{1+\left[z^{\prime}(\rho)\right]^{2}}}{\rho \sqrt{\rho^{2}-a^{2}}} d \rho \tag{5.39}
\end{equation*}
$$

which we must integrate to find $\phi(\rho)$, subject to boundary conditions $\phi\left(\rho_{i}\right)=\phi_{i}$, with $i=1,2$.

On a cone, $z(\rho)=\lambda \rho$, and we have

$$
\begin{equation*}
d \phi=a \sqrt{1+\lambda^{2}} \frac{d \rho}{\rho \sqrt{\rho^{2}-a^{2}}}=\sqrt{1+\lambda^{2}} d \tan ^{-1} \sqrt{\frac{\rho^{2}}{a^{2}}-1} \tag{5.40}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\phi(\rho)=\beta+\sqrt{1+\lambda^{2}} \tan ^{-1} \sqrt{\frac{\rho^{2}}{a^{2}}-1} \tag{5.41}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\rho \cos \left(\frac{\phi-\beta}{\sqrt{1+\lambda^{2}}}\right)=a . \tag{5.42}
\end{equation*}
$$

The constants β and a are determined from $\phi\left(\rho_{i}\right)=\phi_{i}$.

5.3.3 Example 3 : Brachistochrone

Problem: find the path between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ which a particle sliding frictionlessly and under constant gravitational acceleration will traverse in the shortest time. To solve this we first must invoke some elementary mechanics. Assuming the particle is released from $\left(x_{1}, y_{1}\right)$ at rest, energy conservation says

$$
\begin{equation*}
\frac{1}{2} m v^{2}-m g y=m g y_{1} \tag{5.43}
\end{equation*}
$$

Then the time, which is a functional of the curve $y(x)$, is

$$
\begin{align*}
T[y(x)] & =\int_{x_{1}}^{x_{2}} \frac{d s}{v}=\frac{1}{\sqrt{2 g}} \int_{x_{1}}^{x_{2}} d x \sqrt{\frac{1+y^{\prime 2}}{y_{1}-y}} \tag{5.44}\\
& \equiv \int_{x_{1}}^{x_{2}} d x L\left(y, y^{\prime}, x\right)
\end{align*}
$$

with

$$
\begin{equation*}
L\left(y, y^{\prime}, x\right)=\sqrt{\frac{1+y^{\prime 2}}{2 g\left(y_{1}-y\right)}} . \tag{5.45}
\end{equation*}
$$

Since L is independent of x, eqn. 5.25 , we have that

$$
\begin{equation*}
\mathcal{J}=y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L=-\left[2 g\left(y_{1}-y\right)\left(1+y^{\prime 2}\right)\right]^{-1 / 2} \tag{5.46}
\end{equation*}
$$

is conserved. This yields

$$
\begin{equation*}
d x=-\sqrt{\frac{y_{1}-y}{2 a-y_{1}+y}} d y, \tag{5.47}
\end{equation*}
$$

with $a=\left(4 g \mathcal{J}^{2}\right)^{-1}$. This may be integrated parametrically, writing

$$
\begin{equation*}
y_{1}-y=2 a \sin ^{2}\left(\frac{1}{2} \theta\right) \quad \Rightarrow \quad d x=2 a \sin ^{2}\left(\frac{1}{2} \theta\right) d \theta, \tag{5.48}
\end{equation*}
$$

which results in the parametric equations

$$
\begin{align*}
& x-x_{1}=a(\theta-\sin \theta) \tag{5.49}\\
& y-y_{1}=-a(1-\cos \theta) \tag{5.50}
\end{align*}
$$

This curve is known as a cycloid.

Figure 5.5: For shallow water waves, $v=\sqrt{g h}$. To minimize the propagation time from a source to the shore, the waves break parallel to the shoreline.

5.3.4 Ocean Waves

Surface waves in fluids propagate with a definite relation between their angular frequency ω and their wavevector $k=2 \pi / \lambda$, where λ is the wavelength. The dispersion relation is a function $\omega=\omega(k)$. The group velocity of the waves is then $v(k)=d \omega / d k$.

In a fluid with a flat bottom at depth h, the dispersion relation turns out to be

$$
\omega(k)=\sqrt{g k \tanh k h} \approx \begin{cases}\sqrt{g h} k & \text { shallow }(k h \ll 1) \tag{5.51}\\ \sqrt{g k} & \text { deep }(k h \gg 1)\end{cases}
$$

Suppose we are in the shallow case, where the wavelength λ is significantly greater than the depth h of the fluid. This is the case for ocean waves which break at the shore. The phase velocity and group velocity are then identical, and equal to $v(h)=\sqrt{g h}$. The waves propagate more slowly as they approach the shore.

Let us choose the following coordinate system: x represents the distance parallel to the shoreline, y the distance perpendicular to the shore (which lies at $y=0$), and $h(y)$ is the depth profile of the bottom. We assume $h(y)$ to be a slowly varying function of y which satisfies $h(0)=0$. Suppose a disturbance in the ocean at position
$\left(x_{2}, y_{2}\right)$ propagates until it reaches the shore at $\left(x_{1}, y_{1}=0\right)$. The time of propagation is

$$
\begin{equation*}
T[y(x)]=\int \frac{d s}{v}=\int_{x_{1}}^{x_{2}} d x \sqrt{\frac{1+y^{\prime 2}}{g h(y)}} . \tag{5.52}
\end{equation*}
$$

We thus identify the integrand

$$
\begin{equation*}
L\left(y, y^{\prime}, x\right)=\sqrt{\frac{1+y^{\prime 2}}{g h(y)}} . \tag{5.53}
\end{equation*}
$$

As with the brachistochrone problem, to which this bears an obvious resemblance, L is cyclic in the independent variable x, hence

$$
\begin{equation*}
\mathcal{J}=y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L=-\left[g h(y)\left(1+y^{\prime 2}\right)\right]^{-1 / 2} \tag{5.54}
\end{equation*}
$$

is constant. Solving for $y^{\prime}(x)$, we have

$$
\begin{equation*}
\tan \theta=\frac{d y}{d x}=\sqrt{\frac{a}{h(y)}-1} \tag{5.55}
\end{equation*}
$$

where $a=(g \mathcal{J})^{-1}$ is a constant, and where θ is the local slope of the function $y(x)$. Thus, we conclude that near $y=0$, where $h(y) \rightarrow 0$, the waves come in parallel to the shoreline. If $h(y)=\alpha y$ has a linear profile, the solution is again a cycloid, with

$$
\begin{align*}
& x(\theta)=b(\theta-\sin \theta) \tag{5.56}\\
& y(\theta)=b(1-\cos \theta), \tag{5.57}
\end{align*}
$$

where $b=2 a / \alpha$ and where the shore lies at $\theta=0$. Expanding in a Taylor series in θ for small θ, we may eliminate θ and obtain $y(x)$ as

$$
\begin{equation*}
y(x)=\left(\frac{9}{2}\right)^{1 / 3} b^{1 / 3} x^{2 / 3}+\ldots \tag{5.58}
\end{equation*}
$$

A tsunami is a shallow water wave that manages propagates in deep water. This requires $\lambda>h$, as we've seen, which means the disturbance must have a very long spatial extent out in the open ocean, where $h \sim 10 \mathrm{~km}$. An undersea earthquake is the only possible source; the characteristic length of earthquake fault lines can be hundreds of kilometers. If we take $h=10 \mathrm{~km}$, we obtain $v=\sqrt{g h} \approx 310 \mathrm{~m} / \mathrm{s}$ or $1100 \mathrm{~km} / \mathrm{hr}$. At these speeds, a tsunami can cross the Pacific Ocean in less than a day.

As the wave approaches the shore, it must slow down, since $v=\sqrt{g h}$ is diminishing. But energy is conserved, which means that the amplitude must concomitantly rise. In extreme cases, the water level rise at shore may be 20 meters or more.

