
Chapter 3

Conservative Mechanical Systems
in One Dimension

3.1 Description as a Dynamical System

For one-dimensional mechanical systems, Newton’s second law reads

mẍ = F (x) . (3.1)

A system is conservative if the force is derivable from a potential: F = −dU/dx. The
total energy,

E = T + U = 1
2
mẋ2 + U(x) , (3.2)

is then conserved. This may be verified explicitly:

dE

dt
=

d

dt

[
1
2
mẋ2 + U(x)

]
=
[
mẍ + U ′(x)

]
ẋ = 0 . (3.3)

Conservation of energy allows us to reduce the equation of motion from second
order to first order:

dx

dt
= ±

√√√√ 2

m

(
E − U(x)

)
. (3.4)

Note that the constant E is a constant of integration. The ± sign above depends on
the direction of motion. Points x(E) which satisfy

E = U(x) ⇒ x(E) = U−1(E) , (3.5)
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where U−1 is the inverse function, are called turning points . When the total energy
is E, the motion of the system is bounded by the turning points, and confined to the
region(s) U(x) ≤ E. We can integrate eqn. 3.4 to obtain

t(x)− t(x0) = ±
√

m

2

x∫
x0

dx′√
E − U(x′)

. (3.6)

This is to be inverted to obtain the function x(t). Note that there are now two
constants of integration, E and x0. Since

E = E0 = 1
2
mv2

0 + U(x0) , (3.7)

we could also consider x0 and v0 as our constants of integration, writing E in terms
of x0 and v0. Thus, there are two independent constants of integration.

For motion confined between two turning points x±(E), the period of the motion
is given by

T (E) =
√

2m

x+(E)∫
x−(E)

dx′√
E − U(x′)

. (3.8)

3.1.1 Example : Harmonic Oscillator

In the case of the harmonic oscillator, we have

dt

dx
= ±

√
m

2E − kx2
. (3.9)

Let us substitute

x =

√
2E

k
sin θ . (3.10)

We then find

dt =

√
m

k
dθ , (3.11)

with solution
θ(t) = θ0 + ωt , (3.12)

where ω =
√

k/m is the harmonic oscillator frequency. Thus, the complete motion
of the system is given by

x(t) =

√
2E

k
sin(ωt + θ0) . (3.13)

Note the two constants of integration, E and θ0.
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3.2 One-Dimensional Mechanics as a Dynamical

System

Rather than writing the equation of motion as a single second order ODE, we can
instead write it as two coupled first order ODEs, viz.

dx

dt
= v (3.14)

dv

dt
=

1

m
F (x) . (3.15)

This may be written in matrix-vector form, as

d

dt

(
x
v

)
=

(
v

1
m

F (x)

)
. (3.16)

This is an example of a dynamical system, described by the general form

dϕ

dt
= V (ϕ) , (3.17)

where ϕ = (ϕ1, . . . ,ϕN) is an N -dimensional vector in phase space. For the model
of eqn. 3.16, we evidently have N = 2. The object V (ϕ) is called a vector field . It
is itself a vector, existing at every point in phase space, RR N . Each of the components
of V (ϕ) is a function (in general) of all the components of ϕ:

Vj = Vj(ϕ1, . . . ,ϕN) (j = 1, . . . , N) . (3.18)

Solutions to the equation ϕ̇ = V (ϕ) are called integral curves . Each such integral
curve ϕ(t) is uniquely determined by N constants of integration, which may be taken
to be the initial value ϕ(0). The collection of all integral curves is known as the phase
portrait of the dynamical system.

In plotting the phase portrait of a dynamical system, we need to first solve for
its motion, starting from arbitrary initial conditions. In general this is a difficult
problem, which can only be treated numerically. But for conservative mechanical
systems in d = 1, it is a trivial matter! The reason is that energy conservation
completely determines the phase portraits. The velocity becomes a unique double-

valued function of position, v(x) = ±
√

2
m

(
E − U(x)

)
. The phase curves are thus

curves of constant energy.
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Figure 3.1: A potential U(x) and the corresponding phase portraits. Separatrices are
shown in red.

3.2.1 Sketching Phase Curves

To plot the phase curves,

(i) Sketch the potential U(x).

(ii) Below this plot, sketch v(x; E) = ±
√

2
m

(
E − U(x)

)
.

(iii) When E lies at a local extremum of U(x), the system is at a fixed point .

(a) For E slightly above Emin, the phase curves are ellipses.

(b) For E slightly below Emax, the phase curves are (locally) hyperbolae.

(c) For E = Emax the phase curve is called a separatrix .

(iv) When E > U(∞) or E > U(−∞), the motion is unbounded .

(v) Draw arrows along the phase curves: to the right for v > 0 and left for v < 0.

The period of the orbit T (E) has a simple geometric interpretation. The area A
in phase space enclosed by a bounded phase curve is

A(E) =

∮
E

v dx =
√

8
m

x+(E)∫
x−(E)

dx′
√

E − U(x′) . (3.19)

Thus, the period is proportional to the rate of change of A(E) with E:

T = m
∂A
∂E

. (3.20)
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3.3 Fixed Points and their Vicinity

A fixed point (x∗, v∗) of the dynamics satisfies U ′(x∗) = 0 and v∗ = 0. Taylor’s
theorem then allows us to expand U(x) in the vicinity of x∗:

U(x) = U(x∗)+U ′(x∗) (x−x∗)+ 1
2
U ′′(x∗) (x−x∗)2 + 1

6
U ′′′(x∗) (x−x∗)3 + . . . . (3.21)

Since U ′(x∗) = 0 the linear term in δx = x − x∗ vanishes. If δx is sufficiently small,
we can ignore the cubic, quartic, and higher order terms, leaving us with

U(δx) ≈ U0 + 1
2
k(δx)2 , (3.22)

where U0 = U(x∗) and k = U ′′(x∗) > 0. The solutions to the motion in this potential
are:

U ′′(x∗) > 0 : δx(t) = δx0 cos(ωt) +
δv0

ω
sin(ωt) (3.23)

U ′′(x∗) < 0 : δx(t) = δx0 cosh(γt) +
δv0

γ
sinh(γt) , (3.24)

where ω =
√

k/m for k > 0 and γ =
√
−k/m for k < 0. The energy is

E = U0 + 1
2
m (δv0)

2 + 1
2
k (δx0)

2 . (3.25)

For a separatrix, we have E = U0 and U ′′(x∗) < 0. From the equation for the
energy, we obtain δv0 = ±γ δx0. Let’s take δv0 = −γ δx0, so that the initial velocity
is directed toward the unstable fixed point (UFP). I.e. the initial velocity is negative
if we are to the right of the UFP (δx0 > 0) and positive if we are to the left of the
UFP (δx0 < 0). The motion of the system is then

δx(t) = δx0 exp(−γt) . (3.26)

The particle gets closer and closer to the unstable fixed point at δx = 0, but it takes
an infinite amount of time to actually get there. Put another way, the time it takes
to get from δx0 to a closer point δx < δx0 is

t = γ−1 ln

(
δx0

δx

)
. (3.27)

This diverges logarithmically as δx → 0. Generically, then, the period of motion along
a separatrix is infinite.
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3.3.1 Linearized Dynamics in the Vicinity of a Fixed Point

Linearizing in the vicinity of such a fixed point, we write δx = x−x∗ and δv = v−v∗,
obtaining

d

dt

(
δx
δv

)
=

(
0 1

− 1
m

U ′′(x∗) 0

)(
δx
δv

)
+ . . . , (3.28)

This is a linear equation, which we can solve completely.

Consider the general linear equation ϕ̇ = Aϕ, where A is a fixed real matrix.
Now whenever we have a problem involving matrices, we should start thinking about
eigenvalues and eigenvectors. Invariably, the eigenvalues and eigenvectors will prove
to be useful, if not essential, in solving the problem. The eigenvalue equation is

Aψα = λαψα . (3.29)

Here ψα is the αth right eigenvector 1 of A. The eigenvalues are roots of the charac-
teristic equation P (λ) = 0, where P (λ) = det(λ · 11 −A). Let’s expand ϕ(t) in terms
of the right eigenvectors of A:

ϕ(t) =
∑

α

Cα(t)ψα . (3.30)

Assuming, for the purposes of this discussion, that A is nondegenerate, and its eigen-
vectors span RR N , the dynamical system can be written as a set of decoupled first order
ODEs for the coefficients Cα(t):

Ċα = λα Cα , (3.31)

with solutions
Cα(t) = Cα(0) exp(λαt) . (3.32)

If Re(λα) > 0, Cα(t) flows off to infinity, while if Re(λα) > 0, Cα(t) flows to zero. If
|λα| = 1, then Cα(t) oscillates with frequency Im(λα).

For a two-dimensional matrix, it is easy to show – an exercise for the reader –
that

P (λ) = λ2 − Tλ + D , (3.33)

where T = Tr(A) and D = det(A). The eigenvalues are then

λ± = 1
2
T ± 1

2

√
T 2 − 4D . (3.34)

We’ll study the general case in Physics 110B. For now, we focus on our conservative
mechanical system of eqn. 3.28. The trace and determinant of the above matrix are
T = 0 and D = 1

m
U ′′(x∗). Thus, there are only two (generic) possibilities: centers ,

when U ′′(x∗) > 0, and saddles , when U ′′(x∗) < 0. Examples of each are shown in
Fig. 3.1.

1If A is symmetric, the right and left eigenvectors are the same. If A is not symmetric, the right
and left eigenvectors differ, although the set of corresponding eigenvalues is the same.
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Figure 3.2: Phase curves in the vicinity of centers and saddles.

3.4 Examples of Conservative One-Dimensional Sys-

tems

3.4.1 Harmonic Oscillator

Recall again the harmonic oscillator, discussed in lecture 3. The potential energy is
U(x) = 1

2
kx2. The equation of motion is

m
d2x

dt2
= −dU

dx
= −kx , (3.35)

where m is the mass and k the force constant (of a spring). With v = ẋ, this may be
written as the N = 2 system,

d

dt

(
x
v

)
=

(
0 1
−ω2 0

)(
x
v

)
=

(
v

−ω2 x

)
, (3.36)

where ω =
√

k/m has the dimensions of frequency (inverse time). The solution is
well known:

x(t) = x0 cos(ωt) +
v0

ω
sin(ωt) (3.37)

v(t) = v0 cos(ωt)− ω x0 sin(ωt) . (3.38)

The phase curves are ellipses:

ω0 x2(t) + ω−1
0 v2(t) = C , (3.39)
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Figure 3.3: Phase curves for the harmonic oscillator.

where C is a constant, independent of time. A sketch of the phase curves and of the
phase flow is shown in Fig. 3.3. Note that the x and v axes have different dimensions.

Energy is conserved:
E = 1

2
mv2 + 1

2
kx2 . (3.40)

Therefore we may find the length of the semimajor and semiminor axes by setting
v = 0 or x = 0, which gives

xmax =

√
2E

k
, vmax =

√
2E

m
. (3.41)

The area of the elliptical phase curves is thus

A(E) = π xmax vmax =
2πE√
mk

. (3.42)

The period of motion is therefore

T (E) = m
∂A
∂E

= 2π

√
m

k
, (3.43)

which is independent of E.

3.4.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless
rigid rod of length `. The potential is U(θ) = −mg` cos θ, hence

m`2 θ̈ = −dU

dθ
= −mg` sin θ . (3.44)
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Figure 3.4: Phase curves for the simple pendulum. The separatrix divides phase space
into regions of vibration and libration.

This is equivalent to
d

dt

(
θ
ω

)
=

(
ω

−ω2
0 sin θ

)
, (3.45)

where ω = θ̇ is the angular velocity, and where ω0 =
√

g/` is the natural frequency
of small oscillations.

The conserved energy is

E = 1
2
m`2 θ̇2 + U(θ) . (3.46)

Assuming the pendulum is released from rest at θ = θ0,

2E

m`2
= θ̇2 − 2ω2

0 cos θ = −2ω2
0 cos θ0 . (3.47)

The period for motion of amplitude θ0 is then

T
(
θ0

)
=

√
8

ω0

θ0∫
0

dθ√
cos θ − cos θ0

=
4

ω0

K
(
sin2 1

2
θ0

)
, (3.48)

where K(z) is the complete elliptic integral of the first kind. Expanding K(z), we
have

T
(
θ0

)
=

2π

ω0

{
1 + 1

4
sin2

(
1
2
θ0

)
+ 9

64
sin4

(
1
2
θ0

)
+ . . .

}
. (3.49)

For θ0 → 0, the period approaches the usual result 2π/ω0, valid for the linearized
equation θ̈ = −ω2

0 θ. As θ0 → π
2
, the period diverges logarithmically.
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The phase curves for the pendulum are shown in Fig. 3.4. The small oscillations
of the pendulum are essentially the same as those of a harmonic oscillator. Indeed,
within the small angle approximation, sin θ ≈ θ, and the pendulum equations of
motion are exactly those of the harmonic oscillator. These oscillations are called
librations . They involve a back-and-forth motion in real space, and the phase space
motion is contractable to a point, in the topological sense. However, if the initial
angular velocity is large enough, a qualitatively different kind of motion is observed,
whose phase curves are rotations . In this case, the pendulum bob keeps swinging
around in the same direction, because, as we’ll see in a later lecture, the total energy
is sufficiently large. The phase curve which separates these two topologically distinct
motions is called a separatrix .

3.4.3 Other Potentials

Using the phase plotter application written by Ben Schmidel, available on the Physics
110A course web page, it is possible to explore the phase curves for a wide variety of
potentials. Three examples are shown in the following pages. The first is the effective
potential for the Kepler problem,

Ueff(r) = −k

r
+

`2

2µr2
, (3.50)

about which we shall have much more to say when we study central forces. Here r is
the separation between two gravitating bodies of masses m1,2, µ = m1m2/(m1 + m2)

is the ‘reduced mass’, and k = Gm1m2, where G is the Cavendish constant. We can
then write

Ueff(r) = U0

{
− 1

x
+

1

2x2

}
, (3.51)

where r0 = `2/µk has the dimensions of length, and x ≡ r/r0, and where U0 = k/r0 =
µk2/`2. Thus, if distances are measured in units of r0 and the potential in units of
U0, the potential may be written in dimensionless form as U(x) = − 1

x
+ 1

2x2 .

The second is the hyperbolic secant potential,

U(x) = −U0 sech2(x/a) , (3.52)

which, in dimensionless form, is U(x) = −sech2(x), after measuring distances in units
of a and potential in units of U0.

The final example is

U(x) = U0

{
cos
(x

a

)
+

x

2a

}
. (3.53)

Again measuring x in units of a and U in units of U0, we arrive at U(x) = cos(x)+ 1
2
x.
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Figure 3.5: Phase curves for the Kepler effective potential U(x) = −x−1 + 1
2
x−2.
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Figure 3.6: Phase curves for the potential U(x) = −sech2(x).
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Figure 3.7: Phase curves for the potential U(x) = cos(x) + 1
2
x.
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