
Chapter 8

Constraints

A mechanical system of N point particles in d dimensions possesses n = dN degrees
of freedom1. To specify these degrees of freedom, we can choose any independent set
of generalized coordinates {q1, . . . , qK}. Oftentimes, however, not all n coordinates
are independent.

Consider, for example, the situation in Fig. 8.1, where a cylinder of radius a rolls
over a half-cylinder of radius R. If there is no slippage, then the angles θ1 and θ2 are
not independent, and they obey the equation of constraint ,

R θ1 = a (θ2 − θ1) . (8.1)

In this case, we can easily solve the constraint equation and substitute θ2 =
(
1+ R

a

)
θ1.

In other cases, though, the equation of constraint might not be so easily solved (e.g.
it may be nonlinear). How then do we proceed?

8.1 Constraints and Variational Calculus

Before addressing the subject of constrained dynamical systems, let’s consider the
issue of constraints in the broader context of variational calculus. Suppose we have a
functional

F [y(x)] =

xb∫
xa

dx L(y, y′, x) , (8.2)

1For N rigid bodies, the number of degrees of freedom is n′ = 1
2d(d + 1)N , corresponding to d

center-of-mass coordinates and 1
2d(d − 1) angles of orientation for each particle. The dimension of

the group of rotations in d dimensions is 1
2d(d − 1), corresponding to the number of parameters in

a general rank-d orthogonal matrix (i.e. an element of the group O(d)).
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Figure 8.1: A cylinder of radius a rolls along a half-cylinder of radius R. When there
is no slippage, the angles θ1 and θ2 obey the constraint equation Rθ1 = a(θ2 − θ1).

which we want to extremize subject to some constraints. Here y may stand for a set
of functions {yσ(x)}. There are two classes of constraints we will consider:

1. Integral constraints: These are of the form

xb∫
xa

dx Nl(y, y′, x) = Cl , (8.3)

where k labels the constraint.

2. Holonomic constraints: These are of the form

Gk(y, x) = 0 . (8.4)

The cylinders system in Fig. 8.1 provides an example of a holonomic constraint.
There, G(θ, t) = R θ1 − a (θ2 − θ1) = 0. As an example of a problem with an integral
constraint, suppose we want to know the shape of a hanging rope of fixed length C.
This means we minimize the rope’s potential energy,

U [y(x)] = λg

xb∫
xa

ds y(x) = λg

xb∫
xa

dx y

√
1 + y′2 , (8.5)
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where λ is the linear mass density of the rope, subject to the fixed-length constraint

C =

xb∫
xa

ds =

xb∫
xa

dx

√
1 + y′2 . (8.6)

Note ds =
√

dx2 + dy2 is the differential element of arc length along the rope. To
solve problems like these, we turn to Lagrange’s method of undetermined multipliers .

8.2 Constrained Extremization of Functions

Given F (x1, . . . , xn) to be extremized subject to k constraints of the form Gj(x1, . . . , xn) =
0 where j = 1, . . . , k, construct

F ∗(x1, . . . , xn; λ1, . . . , λk

)
≡ F (x1, . . . , xn) +

k∑
j=1

λj Gj(x1, . . . , xn) (8.7)

which is a function of the (n + k) variables
{
x1, . . . , xn; λ1, . . . , λk

}
. Now freely ex-

tremize the extended function F ∗:

dF ∗ =
n∑

σ=1

∂F ∗

∂xσ

dxσ +
k∑

j=1

∂F ∗

∂λj

dλj (8.8)

=
n∑

σ=1

(
∂F

∂xσ

+
k∑

j=1

λj
∂Gj

∂xσ

)
dxσ +

k∑
j=1

Gj dλj = 0 (8.9)

This results in the (n + k) equations

∂F

∂xσ

+
k∑

j=1

λj
∂Gj

∂xσ

= 0 (σ = 1, . . . , n) (8.10)

Gj = 0 (j = 1, . . . , k) . (8.11)

The interpretation of all this is as follows. The n equations in 8.10 can be written
in vector form as

∇F +
k∑

j=1

λj ∇Gj = 0 . (8.12)

This says that the (n-component) vector ∇F is linearly dependent upon the k vectors
∇Gj. Thus, any movement in the direction of ∇F must necessarily entail movement
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along one or more of the directions ∇Gj. This would require violating the constraints,

since movement along ∇Gj takes us off the level set Gj = 0. Were ∇F linearly

independent of the set {∇Gj}, this would mean that we could find a differential

displacement dx which has finite overlap with ∇F but zero overlap with each ∇Gj.

Thus x + dx would still satisfy Gj(x + dx) = 0, but F would change by the finite
amount dF = ∇F (x) · dx.

8.3 Extremization of Functionals : Integral Con-

straints

Given a functional

F
[
{yσ(x)}

]
=

xb∫
xa

dx L
(
{yσ}, {y′σ}, x

)
(σ = 1, . . . , n) (8.13)

subject to boundary conditions δyσ(xa) = δyσ(xb) = 0 and k constraints of the form

xb∫
xa

dx Nl

(
{yσ}, {y′σ}, x

)
= Cl (l = 1, . . . , k) , (8.14)

construct the extended functional

F ∗[{yσ(x)}; {λj}
]
≡

xb∫
xa

dx

{
L
(
{yσ}, {y′σ}, x

)
+

k∑
l=1

λl Nl

(
{yσ}, {y′σ}, x

)}
−

k∑
l=1

λl Cl

(8.15)
and freely extremize over {y1, . . . , yn; λ1, . . . , λk}. This results in (n + k) equations

∂L

∂yσ

− d

dx

(
∂L

∂y′σ

)
+

k∑
l=1

λl

{
∂Nl

∂yσ

− d

dx

(
∂Nl

∂y′σ

)}
= 0 (σ = 1, . . . , n) (8.16)

xb∫
xa

dx Nl

(
{yσ}, {y′σ}, x

)
= Cl (l = 1, . . . , k) . (8.17)
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8.4 Extremization of Functionals : Holonomic Con-

straints

Given a functional

F
[
{yσ(x)}

]
=

xb∫
xa

dx L
(
{yσ}, {y′σ}, x

)
(σ = 1, . . . , n) (8.18)

subject to boundary conditions δyσ(xa) = δyσ(xb) = 0 and k constraints of the form

Gj

(
{yσ(x)}, x

)
= 0 (j = 1, . . . , k) , (8.19)

construct the extended functional

F ∗[{yσ(x)}; {λj(x)}
]
≡

xb∫
xa

dx

{
L
(
{yσ}, {y′σ}, x

)
+

k∑
j=1

λj Gj

(
{yσ}

)}
(8.20)

and freely extremize over
{
y1, . . . , yn; λ1, . . . , λk

}
:

δF ∗ =

xb∫
xa

dx

{
n∑

σ=1

(
∂L

∂yσ

− d

dx

(
∂L

∂y′σ

)
+

k∑
j=1

λj
∂Gj

∂yσ

)
δyσ +

k∑
j=1

Gj δλj

}
= 0 , (8.21)

resulting in the (n + k) equations

d

dx

(
∂L

∂y′σ

)
− ∂L

∂yσ

=
k∑

j=1

λj
∂Gj

∂yσ

(σ = 1, . . . , n) (8.22)

Gj

(
{yσ}, x

)
= 0 (j = 1, . . . , k) . (8.23)

8.4.1 Examples of Extremization with Constraints

Volume of a cylinder : As a warm-up problem, let’s maximize the volume V = πa2h
of a cylinder of radius a and height h, subject to the constraint

G(a, h) = 2πa +
h2

b
− ` = 0 . (8.24)

We therefore define
V ∗(a, h, λ) ≡ V (a, h) + λ G(a, h) , (8.25)
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and set

∂V ∗

∂a
= 2πah + 2πλ = 0 (8.26)

∂V ∗

∂h
= πa2 + 2λ

h

b
= 0 (8.27)

∂V ∗

∂λ
= 2πa +

h2

b
− ` = 0 . (8.28)

Solving these three equations simultaneously gives

a =
2`

5π
, h =

√
b`

5
, λ =

2π

53/2
b1/2 `3/2 , V =

4

55/2 π
`5/2 b1/2 . (8.29)

Hanging rope : We minimize the energy functional

E
[
y(x)

]
= µg

x2∫
x1

dx y

√
1 + y′2 , (8.30)

where µ is the linear mass density, subject to the constraint of fixed total length,

C
[
y(x)

]
=

x2∫
x1

dx

√
1 + y′2 . (8.31)

Thus,

E∗[y(x), λ
]

= E
[
y(x)

]
+ λC

[
y(x)

]
=

x2∫
x1

dx L∗(y, y′, x) , (8.32)

with

L∗(y, y′, x) = (µgy + λ)

√
1 + y′2 . (8.33)

Since ∂L∗

∂x
= 0 we have that

J = y′
∂L∗

∂y′
− L∗ = − µgy + λ√

1 + y′2
(8.34)

is constant. Thus,
dy

dx
= ±J −1

√
(µgy + λ)2 − J 2 , (8.35)

with solution

y(x) = − λ

µg
+
J
µg

cosh
(µg

J
(x− a)

)
. (8.36)
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Here, J , a, and λ are constants to be determined by demanding y(xi) = yi (i = 1, 2),
and that the total length of the rope is C.

Geodesic on a curved surface : Consider next the problem of a geodesic on a curved
surface. Let the equation for the surface be

G(x, y, z) = 0 . (8.37)

We wish to extremize the distance,

D =

b∫
a

ds =

b∫
a

√
dx2 + dy2 + dz2 . (8.38)

We introduce a parameter t defined on the unit interval: t ∈ [0, 1], such that x(0) = xa,
x(1) = xb, etc. Then D may be regarded as a functional, viz.

D
[
x(t), y(t), z(t)

]
=

1∫
0

dt
√

ẋ2 + ẏ2 + ż2 . (8.39)

We impose the constraint by forming the extended functional, D∗:

D∗[x(t), y(t), z(t), λ(t)
]
≡

1∫
0

dt

{√
ẋ2 + ẏ2 + ż2 + λ G(x, y, z)

}
, (8.40)

and we demand that the first functional derivatives of D∗ vanish:

δD∗

δx(t)
= − d

dt

(
ẋ√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂x
= 0 (8.41)

δD∗

δy(t)
= − d

dt

(
ẏ√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂y
= 0 (8.42)

δD∗

δz(t)
= − d

dt

(
ż√

ẋ2 + ẏ2 + ż2

)
+ λ

∂G

∂z
= 0 (8.43)

δD∗

δλ(t)
= G(x, y, z) = 0 . (8.44)

Thus,

λ(t) =
vẍ− ẋv̇

v2 ∂xG
=

vÿ − ẏv̇

v2 ∂yG
=

vz̈ − żv̇

v2 ∂zG
, (8.45)

with v =
√

ẋ2 + ẏ2 + ż2 and ∂x ≡ ∂
∂x

, etc. These three equations are supplemented
by G(x, y, z) = 0, which is the fourth.
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8.5 Application to Mechanics

Let us write our system of constraints in the differential form

n∑
σ=1

gjσ(q, t) dqσ + hj(q, t)dt = 0 (j = 1, . . . , k) . (8.46)

If the partial derivatives satisfy

∂gjσ

∂qσ′
=

∂gjσ′

∂qσ

,
∂gjσ

∂t
=

∂hj

∂qσ

, (8.47)

then the differential can be integrated to give dG(q, t) = 0, where

gjσ =
∂Gj

∂qσ

, hj =
∂Gj

∂t
. (8.48)

The action functional is

S[{qσ(t)}] =

tb∫
ta

dt L
(
{qσ}, {q̇σ}, t

)
(σ = 1, . . . , n) , (8.49)

subject to boundary conditions δqσ(ta) = δqσ(tb) = 0. The first variation of S is given
by

δS =

tb∫
ta

dt
n∑

σ=1

{
∂L

∂qσ

− d

dt

(
∂L

∂q̇σ

)}
δqσ . (8.50)

Since the {qσ(t)} are no longer independent, we cannot infer that the term in brackets
vanishes for each σ. What are the constraints on the variations δqσ(t)? The con-
straints are expressed in terms of virtual displacements which take no time: δt = 0.
Thus,

n∑
σ=1

gjσ(q, t) δqσ(t) = 0 . (8.51)

We may now relax the constraint by introducing k undetermined functions λj(t), by
adding integrals of the above equations with undetermined coefficient functions to
δS:

n∑
σ=1

{
∂L

∂qσ

− d

dt

(
∂L

∂q̇σ

)
+

k∑
j=1

λj(t) gjσ(q, t)

}
δqσ(t) = 0 . (8.52)
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Now we can demand that the term in brackets vanish for all σ. Thus, we obtain a
set of (n + k) equations,

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ

=
k∑

j=1

λj(t) gjσ(q, t) ≡ Qσ (8.53)

gjσ(q, t) q̇σ + hj(q, t) = 0 , (8.54)

in (n + k) unknowns
{
q1, . . . , qn, λ1, . . . , λk

}
. Here, Qσ is the force of constraint

conjugate to the generalized coordinate qσ. Thus, with

pσ =
∂L

∂q̇σ

, Fσ =
∂L

∂qσ

, Qσ =
k∑

j=1

λj gjσ , (8.55)

we write Newton’s second law as

ṗσ = Fσ + Qσ . (8.56)

Note that we can write

δS

δq(t)
=

∂L

∂q
− d

dt

(
∂L

∂q̇

)
(8.57)

and that the instantaneous constraints may be written

gj · δq = 0 (j = 1, . . . , k) . (8.58)

Thus, by demanding

δS

δq(t)
+

k∑
j=1

λj gj = 0 (8.59)

we require that the functional derivative be linearly dependent on the k vectors gj.

8.5.1 Constraints and conservation laws

We have seen how invariance of the Lagrangian with respect to a one-parameter family
of coordinate transformations results in an associated conserved quantity Λ, and how
a lack of explicit time dependence in L results in the conservation of the Hamiltonian
H. In deriving both these results, however, we used the equations of motion ṗσ = Fσ.
What happens when we have constraints, in which case ṗσ = Fσ + Qσ?
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Let’s begin with the Hamiltonian. We have H = q̇σ pσ − L, hence

dH

dt
=

(
pσ −

∂L

∂q̇σ

)
q̈σ +

(
ṗσ −

∂L

∂qσ

)
q̇σ −

∂L

∂t

= Qσ q̇σ −
∂L

∂t
. (8.60)

We now use
Qσ q̇σ = λj gjσ q̇σ = −λj hj (8.61)

to obtain
dH

dt
= −λj hj −

∂L

∂t
. (8.62)

We therefore conclude that in a system with constraints of the form gjσ q̇σ + hj = 0,

the Hamiltonian is conserved if each hj = 0 and if L is not explicitly dependent on

time. In the case of holonomic constraints, hj =
∂Gj

∂t
, so H is conserved if neither L

nor any of the constraints Gj is explicitly time-dependent.

Next, let us rederive Noether’s theorem when constraints are present. We assume
a one-parameter family of transformations qσ → q̃σ(ζ) leaves L invariant. Then

0 =
dL

dζ
=

∂L

∂q̃σ

∂q̃σ

∂ζ
+

∂L

∂ ˙̃qσ

∂ ˙̃qσ

∂ζ

=
(
˙̃pσ − Q̃σ

) ∂q̃σ

∂ζ
+ p̃σ

d

dt

(
∂q̃σ

∂ζ

)
=

d

dt

(
p̃σ

∂q̃σ

∂ζ

)
− λj g̃jσ

∂q̃σ

∂ζ
. (8.63)

Now let us write the constraints in differential form as

g̃jσ dq̃σ + h̃j dt + k̃j dζ = 0 . (8.64)

We now have
dΛ

dt
= λj k̃j , (8.65)

which says that if the constraints are independent of ζ then Λ is conserved. For
holonomic constraints, this means that

Gj

(
q̃(ζ), t

)
= 0 ⇒ k̃j =

∂Gj

∂ζ
= 0 , (8.66)

i.e. Gj(q̃, t) has no explicit ζ dependence.
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8.6 Worked Examples

Here we consider several example problems of constrained dynamics, and work each
out in full detail.

8.6.1 One cylinder rolling off another

As an example of the constraint formalism, consider the system in Fig. 8.1, where a
cylinder of radius a rolls atop a cylinder of radius R. We have two constraints:

G1(r, θ1, θ2) = r −R− a = 0 (cylinders in contact) (8.67)

G2(r, θ1, θ2) = R θ1 − a (θ2 − θ1) = 0 (no slipping) , (8.68)

from which we obtain the gjσ:

gjσ =

(
1 0 0
0 R + a −a

)
, (8.69)

which is to say

∂G1

∂r
= 1

∂G1

∂θ1

= 0
∂G1

∂θ2

= 0 (8.70)

∂G2

∂r
= 0

∂G2

∂θ1

= R + a
∂G2

∂θ2

= −a . (8.71)

The Lagrangian is

L = T − U = 1
2
M
(
ṙ2 + r2 θ̇2

1

)
+ 1

2
I θ̇2

2 −Mgr cos θ1 , (8.72)

where M and I are the mass and rotational inertia of the rolling cylinder, respectively.
Note that the kinetic energy is a sum of center-of-mass translation Ttr = 1

2
M
(
ṙ2 +

r2 θ̇2
1

)
and rotation about the center-of-mass, Trot = 1

2
I θ̇2

2. The equations of motion
are

d

dt

(
∂L

∂r

)
− ∂L

∂r
= Mr̈ −Mr θ̇2

1 + Mg cos θ1 = λ1 ≡ Qr (8.73)

d

dt

(
∂L

∂θ1

)
− ∂L

∂θ1

= Mr2θ̈1 + 2Mrṙ θ̇1 −Mgr sin θ1 = (R + a) λ2 ≡ Qθ1
(8.74)

d

dt

(
∂L

∂θ2

)
− ∂L

∂θ2

= Iθ̈2 = −a λ2 ≡ Qθ2
. (8.75)
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To these three equations we add the two constraints, resulting in five equations in
the five unknowns

{
r, θ1, θ2, λ1, λ2

}
.

We solve by first implementing the constraints, which give r = (R + a) a constant
(i.e. ṙ = 0), and θ̇2 =

(
1 + R

a

)
θ̇1. Substituting these into the above equations gives

−M(R + a) θ̇2
1 + Mg cos θ1 = λ1 (8.76)

M(R + a)2θ̈1 −Mg(R + a) sin θ1 = (R + a) λ2 (8.77)

I

(
R + a

a

)
θ̈1 = −aλ2 . (8.78)

From eqn. 8.78 we obtain

λ2 = −I

a
θ̈2 = −R + a

a2
I θ̈1 , (8.79)

which we substitute into eqn. 8.77 to obtain(
M +

I

a2

)
(R + a)2θ̈1 −Mg(R + a) sin θ1 = 0 . (8.80)

Multiplying by θ̇1, we obtain an exact differential, which may be integrated to yield

1
2
M

(
1 +

I

Ma2

)
θ̇2
1 +

Mg

R + a
cos θ1 =

Mg

R + a
cos θ◦1 . (8.81)

Here, we have assumed that θ̇1 = 0 when θ1 = θ◦1, i.e. the rolling cylinder is released
from rest at θ1 = θ◦1. Finally, inserting this result into eqn. 8.76, we obtain the radial
force of constraint,

Qr =
Mg

1 + α

{
(3 + α) cos θ1 − 2 cos θ◦1

}
, (8.82)

where α = I/Ma2 is a dimensionless parameter (0 ≤ α ≤ 1). This is the radial
component of the normal force between the two cylinders. When Qr vanishes, the
cylinders lose contact – the rolling cylinder flies off. Clearly this occurs at an angle
θ1 = θ∗1, where

θ∗1 = cos−1

(
2 cos θ◦1
3 + α

)
. (8.83)

The detachment angle θ∗1 is an increasing function of α, which means that larger I
delays detachment. This makes good sense, since when I is larger the gain in kinetic
energy is split between translational and rotational motion of the rolling cylinder.
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Figure 8.2: Frictionless motion under gravity along a curved surface. The skier flies
off the surface when the normal force vanishes.

8.6.2 Frictionless motion along a curve

Consider the situation in Fig. 8.2 where a skier moves frictionlessly under the influence
of gravity along a general curve y = h(x). The Lagrangian for this problem is

L = 1
2
m(ẋ2 + ẏ2)−mgy (8.84)

and the (holonomic) constraint is

G(x, y) = y − h(x) = 0 . (8.85)

Accordingly, the Euler-Lagrange equations are

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ

= λ
∂G

∂qσ

, (8.86)

where q1 = x and q2 = y. Thus, we obtain

mẍ = −λ h′(x) = Qx (8.87)

mÿ + mg = λ = Qy . (8.88)

We eliminate y in favor of x by invoking the constraint. Since we need ÿ, we must
differentiate the constraint, which gives

ẏ = h′(x) ẋ , ÿ = h′(x) ẍ + h′′(x) ẋ2 . (8.89)

Using the second Euler-Lagrange equation, we then obtain

λ

m
= g + h′(x) ẍ + h′′(x) ẋ2 . (8.90)
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Finally, we substitute this into the first E-L equation to obtain an equation for x
alone: (

1 +
[
h′(x)

]2)
ẍ + h′(x) h′′(x) ẋ2 + g h′(x) = 0 . (8.91)

Had we started by eliminating y = h(x) at the outset, writing

L(x, ẋ) = 1
2
m
(
1 +

[
h′(x)

]2)
ẋ2 −mg h(x) , (8.92)

we would also have obtained this equation of motion.

The skier flies off the curve when the vertical force of constraint Qy = λ starts to
become negative, because the curve can only supply a positive normal force. Suppose
the skier starts from rest at a height y0. We may then determine the point x at which
the skier detaches from the curve by setting λ(x) = 0. To do so, we must eliminate
ẋ and ẍ in terms of x. For ẍ, we may use the equation of motion to write

ẍ = −
(

gh′ + h′ h′′ ẋ2

1 + h′2

)
, (8.93)

which allows us to write

λ = m

(
g + h′′ ẋ2

1 + h′2

)
. (8.94)

To eliminate ẋ, we use conservation of energy,

E = mgy0 = 1
2
m
(
1 + h′2) ẋ2 + mgh , (8.95)

which fixes

ẋ2 = 2g

(
y0 − h

1 + h′2

)
. (8.96)

Putting it all together, we have

λ(x) =
mg(

1 + h′2
){1 + h′2 + 2(y0 − h) h′′

}
. (8.97)

The skier detaches from the curve when λ(x) = 0, i.e. when

1 + h′2 + 2(y0 − h) h′′ = 0 . (8.98)

There is a somewhat easier way of arriving at the same answer. This is to note
that the skier must fly off when the local centripetal force equals the gravitational
force normal to the curve, i.e.

m v2(x)

R(x)
= mg cos θ(x) , (8.99)
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Figure 8.3: Finding the local radius of curvature: z = η2/2R.

where R(x) is the local radius of curvature. Now tan θ = h′, so cos θ =
(
1 + h′2)−1/2

.

The square of the velocity is v2 = ẋ2 + ẏ2 =
(
1 + h′2) ẋ2. What is the local radius of

curvature R(x)? This can be determined from the following argument, and from the
sketch in Fig. 8.3. Writing x = x∗ + ε, we have

y = h(x∗) + h′(x∗) ε + 1
2
h′′(x∗) ε2 + . . . . (8.100)

We now drop a perpendicular segment of length z from the point (x, y) to the line
which is tangent to the curve at

(
x∗, h(x∗)

)
. According to Fig. 8.3, this means(

ε
y

)
= η · 1√

1+h′2

(
1
h′

)
− z · 1√

1+h′2

(
−h′

1

)
. (8.101)

Thus, we have

y = h′ ε + 1
2
h′′ ε2

= h′
(

η + z h′√
1 + h′2

)
+ 1

2
h′′
(

η + z h′√
1 + h′2

)2

=
η h′ + z h′2√

1 + h′2
+

h′′ η2

2
(
1 + h′2

) +O(ηz)

=
η h′ − z√

1 + h′2
, (8.102)

from which we obtain

z = − h′′ η2

2
(
1 + h′2

)3/2
+O(η3) (8.103)
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and therefore

R(x) = − 1

h′′(x)
·
(
1 +

[
h′(x)

]2)3/2

. (8.104)

Thus, the detachment condition,

mv2

R
= − m h′′ ẋ2√

1 + h′2
=

mg√
1 + h′2

= mg cos θ (8.105)

reproduces the result from eqn. 8.94.

8.6.3 Disk rolling down an inclined plane

A hoop of mass m and radius R rolls without slipping down an inclined plane. The
inclined plane has opening angle α and mass M , and itself slides frictionlessly along
a horizontal surface. Find the motion of the system.

Figure 8.4: A hoop rolling down an inclined plane lying on a frictionless surface.

Solution : Referring to the sketch in Fig. 8.4, the center of the hoop is located
at

x = X + s cos α− a sin α

y = s sin α + a cos α ,

where X is the location of the lower left corner of the wedge, and s is the distance
along the wedge to the bottom of the hoop. If the hoop rotates through an angle
θ, the no-slip condition is a θ̇ + ṡ = 0. Thus,

L = 1
2
MẊ2 + 1

2
m
(
ẋ2 + ẏ2

)
+ 1

2
Iθ̇2 −mgy

= 1
2

(
m +

I

a2

)
ṡ2 + 1

2
(M + m)Ẋ2 + m cos α Ẋ ṡ−mgs sin α−mga cos α .
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Since X is cyclic in L, the momentum

PX = (M + m)Ẋ + m cos α ṡ ,

is preserved: ṖX = 0. The second equation of motion, corresponding to the
generalized coordinate s, is(

1 +
I

ma2

)
s̈ + cos α Ẍ = −g sin α .

Using conservation of PX , we eliminate s̈ in favor of Ẍ, and immediately obtain

Ẍ =
g sin α cos α(

1 + M
m

)(
1 + I

ma2

)
− cos2 α

≡ aX .

The result

s̈ = −
g
(
1 + M

m

)
sin α(

1 + M
m

)(
1 + I

ma2

)
− cos2 α

≡ as

follows immediately. Thus,

X(t) = X(0) + Ẋ(0) t + 1
2
aXt2

s(t) = s(0) + ṡ(0) t + 1
2
ast

2 .

Note that as < 0 while aX > 0, i.e. the hoop rolls down and to the left as the
wedge slides to the right. Note that I = ma2 for a hoop; we’ve computed the
answer here for general I.

8.6.4 Pendulum with nonrigid support

A particle of mass m is suspended from a flexible string of length ` in a uniform
gravitational field. While hanging motionless in equilibrium, it is struck a horizontal
blow resulting in an initial angular velocity ω0. Treating the system as one with two
degrees of freedom and a constraint, answer the following:

(a) Compute the Lagrangian, the equation of constraint, and the equations of mo-
tion.

Solution : The Lagrangian is

L = 1
2
m
(
ṙ2 + r2 θ̇2

)
+ mgr cos θ .

The constraint is r = `. The equations of motion are

mr̈ −mr θ̇2 −mg cos θ = λ

mr2 θ̈ + 2mr ṙ θ̇ −mg sin θ = 0 .

17



(b) Compute the tension in the string as a function of angle θ.

Solution : Energy is conserved, hence

1
2
m`2 θ̇2 −mg` cos θ = 1

2
m`2 θ̇2

0 −mg` cos θ0 .

We take θ0 = 0 and θ̇0 = ω0. Thus,

θ̇2 = ω2
0 − 2 Ω2

(
1− cos θ

)
,

with Ω =
√

g/`. Substituting this into the equation for λ, we obtain

λ = mg

{
2− 3 cos θ − ω2

0

Ω2

}
.

(c) Show that if ω2
0 < 2g/` then the particle’s motion is confined below the hori-

zontal and that the tension in the string is always positive (defined such that
positive means exerting a pulling force and negative means exerting a pushing
force). Note that the difference between a string and a rigid rod is that the
string can only pull but the rod can pull or push. Thus, the string tension must
always be positive or else the string goes “slack”.

Solution : Since θ̇2 ≥ 0, we must have

ω2
0

2Ω2
≥ 1− cos θ .

The condition for slackness is λ = 0, or

ω2
0

2Ω2
= 1− 3

2
cos θ .

Thus, if ω2
0 < 2Ω2, we have

1 >
ω2

0

2Ω2
> 1− cos θ > 1− 3

2
cos θ ,

and the string never goes slack. Note the last equality follows from cos θ > 0.
The string rises to a maximum angle

θmax = cos−1
(
1− ω2

0

2Ω2

)
.

(d) Show that if 2g/` < ω2
0 < 5g/` the particle rises above the horizontal and the

string becomes slack (the tension vanishes) at an angle θ∗. Compute θ∗.
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Solution : When ω2 > 2Ω2, the string rises above the horizontal and goes slack
at an angle

θ∗ = cos−1
(

2
3
− ω2

0

3Ω2

)
.

This solution craps out when the string is still taut at θ = π, which means
ω2

0 = 5Ω2.

(e) Show that if ω2
0 > 5g/` the tension is always positive and the particle executes

circular motion.

Solution : For ω2
0 > 5Ω2, the string never goes slack. Furthermore, θ̇ never

vanishes. Therefore, the pendulum undergoes circular motion, albeit not with
constant angular velocity.

8.6.5 Falling ladder

A uniform ladder of length ` and mass m has one end on a smooth horizontal floor
and the other end against a smooth vertical wall. The ladder is initially at rest and
makes an angle θ0 with respect to the horizontal.

Figure 8.5: A ladder sliding down a wall and across a floor.

(a) Make a convenient choice of generalized coordinates and find the Lagrangian.
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Solution : I choose as generalized coordinates the Cartesian coordinates (x, y)
of the ladder’s center of mass, and the angle θ it makes with respect to the floor.
The Lagrangian is then

L = 1
2
m (ẋ2 + ẏ2) + 1

2
I θ̇2 + mgy .

There are two constraints: one enforcing contact along the wall, and the other
enforcing contact along the floor. These are written

G1(x, y, θ) = x− 1
2
` cos θ = 0

G2(x, y, θ) = y − 1
2
` sin θ = 0 .

(b) Prove that the ladder leaves the wall when its upper end has fallen to a height
2
3
L sin θ0. The equations of motion are

d

dt

(
∂L

∂q̇σ

)
− ∂L

∂qσ

=
∑

j

λj
∂Gj

∂qσ

.

Thus, we have

m ẍ = λ1 = Qx

m ÿ + mg = λ2 = Qy

I θ̈ = 1
2
`
(
λ1 sin θ − λ2 cos θ

)
= Qθ .

We now implement the constraints to eliminate x and y in terms of θ. We have

ẋ = −1
2
` sin θ θ̇ ẍ = −1

2
` cos θ θ̇2 − 1

2
` sin θ θ̈

ẏ = 1
2
` cos θ θ̇ ÿ = −1

2
` sin θ θ̇2 + 1

2
` cos θ θ̈ .

We can now obtain the forces of constraint in terms of the function θ(t):

λ1 = −1
2
m`
(
sin θ θ̈ + cos θ θ̇2

)
λ2 = +1

2
m`
(
cos θ θ̈ − sin θ θ̇2

)
+ mg .

We substitute these into the last equation of motion to obtain the result

I θ̈ = −I0 θ̈ − 1
2
mg` cos θ ,

or
(1 + α) θ̈ = −2ω2

0 cos θ ,

with I0 = 1
4
m`2, α ≡ I/I0 and ω0 =

√
g/`. This may be integrated once

(multiply by θ̇ to convert to a total derivative) to yield

1
2
(1 + α) θ̇2 + 2 ω2

0 sin θ = 2 ω2
0 sin θ0 ,
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which is of course a statement of energy conservation. This,

θ̇2 =
4 ω2

0 (sin θ0 − sin θ)

1 + α

θ̈ = −2 ω2
0 cos θ

1 + α
.

We may now obtain λ1(θ) and λ2(θ):

λ1(θ) = − mg

1 + α

(
3 sin θ − 2 sin θ0

)
cos θ

λ2(θ) =
mg

1 + α

{
(3 sin θ − 2 sin θ0

)
sin θ + α

}
.

Demanding λ1(θ) = 0 gives the detachment angle θ = θd, where

sin θd = 2
3
sin θ0 .

Note that λ2(θd) = mgα/(1 + α) > 0, so the normal force from the floor is

always positive for θ > θd. The time to detachment is

T1(θ0) =

∫
dθ

θ̇
=

√
1 + α

2 ω0

θ0∫
θd

dθ√
sin θ0 − sin θ

.

(c) Show that the subsequent motion can be reduced to quadratures (i.e. explicit
integrals).

Solution : After the detachment, there is no longer a constraint G1. The equa-
tions of motion are

m ẍ = 0 (conservation of x-momentum)

m ÿ + m g = λ

I θ̈ = −1
2
` λ cos θ ,

along with the constraint y = 1
2
` sin θ. Eliminating y in favor of θ using the

constraint, the second equation yields

λ = mg − 1
2
m` sin θ θ̇2 + 1

2
m` cos θ θ̈ .

Plugging this into the third equation of motion, we find

I θ̈ = −2 I0 ω2
0 cos θ + I0 sin θ cos θ θ̇2 − I0 cos2 θ θ̈ .
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Figure 8.6: Plot of time to fall for the slipping ladder. Here x = sin θ0.

Multiplying by θ̇ one again obtains a total time derivative, which is equivalent
to rediscovering energy conservation:

E = 1
2

(
I + I0 cos2 θ

)
θ̇2 + 2 I0 ω2

0 sin θ .

By continuity with the first phase of the motion, we obtain the initial conditions
for this second phase:

θ = sin−1
(

2
3
sin θ0

)
θ̇ = −2 ω0

√
sin θ0

3 (1 + α)
.

Thus,

E = 1
2

(
I + I0 − 4

9
I0 sin2 θ0

)
· 4 ω2

0 sin θ0

3 (1 + α)
+ 1

3
mg` sin θ0

= 2 I0 ω2
0 ·
{

1 + 4
27

sin2 θ0

1 + α

}
sin θ0 .

(d) Find an expression for the time T (θ0) it takes the ladder to smack against the
floor. Note that, expressed in units of the time scale

√
L/g, T is a dimensionless

function of θ0. Numerically integrate this expression and plot T versus θ0.
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Solution : The time from detachment to smack is

T2(θ0) =

∫
dθ

θ̇
=

1

2 ω0

θd∫
0

dθ

√
1 + α cos2 θ(

1− 4
27

sin2 θ0

1+α

)
sin θ0 − sin θ

.

The total time is then T (θ0) = T1(θ0) + T2(θ0). For a uniformly dense ladder,
I = 1

12
m`2 = 1

3
I0, so α = 1

3
.

(e) What is the horizontal velocity of the ladder at long times?

Solution : From the moment of detachment, and thereafter,

ẋ = −1
2
` sin θ θ̇ =

√
g `

3 (1 + α)
sin3/2θ0 .

(f) Describe in words the motion of the ladder subsequent to it slapping against
the floor.

Solution : Only a fraction of the ladder’s initial potential energy is converted into
kinetic energy of horizontal motion. The rest is converted into kinetic energy of
vertical motion and of rotation. The slapping of the ladder against the floor is
an elastic collision. After the collision, the ladder must rise again, and continue
to rise and fall ad infinitum, as it slides along with constant horizontal velocity.

8.6.6 Point mass inside rolling hoop

Consider the point mass m inside the hoop of radius R, depicted in Fig. 8.7. We
choose as generalized coordinates the Cartesian coordinates (X,Y ) of the center of
the hoop, the Cartesian coordinates (x, y) for the point mass, the angle φ through
which the hoop turns, and the angle θ which the point mass makes with respect to
the vertical. These six coordinates are not all independent. Indeed, there are only
two independent coordinates for this system, which can be taken to be θ and φ. Thus,
there are four constraints:

X −Rφ ≡ G1 = 0 (8.106)

Y −R ≡ G2 = 0 (8.107)

x−X −R sin θ ≡ G3 = 0 (8.108)

y − Y + R cos θ ≡ G4 = 0 . (8.109)

The kinetic and potential energies are easily expressed in terms of the Cartesian
coordinates, aside from the energy of rotation of the hoop about its CM, which is
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Figure 8.7: A point mass m inside a hoop of mass M , radius R, and moment of inertia
I.

expressed in terms of φ̇:

T = 1
2
M(Ẋ2 + Ẏ 2) + 1

2
m(ẋ2 + ẏ2) + 1

2
I φ̇2 (8.110)

U = MgY + mgy . (8.111)

The moment of inertia of the hoop about its CM is I = MR2, but we could imagine
a situation in which I were different. For example, we could instead place the point
mass inside a very short cylinder with two solid end caps, in which case I = 1

2
MR2.

The Lagrangian is then

L = 1
2
M(Ẋ2 + Ẏ 2) + 1

2
m(ẋ2 + ẏ2) + 1

2
I φ̇2 −MgY −mgy . (8.112)

Note that L as written is completely independent of θ and θ̇!

Continuous symmetry

Note that there is an continuous symmetry to L which is satisfied by all the con-
straints, under

X̃(ζ) = X + ζ Ỹ (ζ) = Y (8.113)

x̃(ζ) = x + ζ ỹ(ζ) = y (8.114)

φ̃(ζ) = φ +
ζ

R
θ̃(ζ) = θ . (8.115)
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Thus, according to Noether’s theorem, there is a conserved quantity

Λ =
∂L

∂Ẋ
+

∂L

∂ẋ
+

1

R

∂L

∂φ̇

= MẊ + mẋ +
I

R
φ̇ . (8.116)

This means Λ̇ = 0. This reflects the overall conservation of momentum in the x-
direction.

Energy conservation

Since neither L nor any of the constraints are explicitly time-dependent, the Hamil-
tonian is conserved. And since T is homogeneous of degree two in the generalized
velocities, we have H = E = T + U :

E = 1
2
M(Ẋ2 + Ẏ 2) + 1

2
m(ẋ2 + ẏ2) + 1

2
I φ̇2 + MgY + mgy . (8.117)

Equations of motion

We have n = 6 generalized coordinates and k = 4 constraints. Thus, there are four
undetermined multipliers {λ1, λ2, λ3, λ4} used to impose the constraints. This makes
for ten unknowns:

X , Y , x , y , φ , θ , λ1 , λ2 , λ3 , λ4 . (8.118)

Accordingly, we have ten equations: six equations of motion plus the four equations
of constraint. The equations of motion are obtained from

d

dt

(
∂L

∂q̇σ

)
=

∂L

∂qσ

+
k∑

j=1

λj
∂Gj

∂qσ

. (8.119)
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Taking each generalized coordinate in turn, the equations of motion are thus

MẌ = λ1 − λ3 (8.120)

MŸ = −Mg + λ2 − λ4 (8.121)

mẍ = λ3 (8.122)

mÿ = −mg + λ4 (8.123)

I φ̈ = −R λ1 (8.124)

0 = −R cos θ λ3 −R sin θ λ4 . (8.125)

Along with the four constraint equations, these determine the motion of the system.
Note that the last of the equations of motion, for the generalized coordinate qσ = θ,
says that Qθ = 0, which means that the force of constraint on the point mass is
radial. Were the point mass replaced by a rolling object, there would be an angular
component to this constraint in order that there be no slippage.

Implementation of constraints

We now use the constraint equations to eliminate X, Y , x, and y in terms of θ and
φ:

X = Rφ , Y = R , x = Rφ + R sin θ , y = R(1− cos θ) . (8.126)

We also need the derivatives:

ẋ = R φ̇ + R cos θ θ̇ , ẍ = R φ̈ + R cos θ θ̈ −R sin θ θ̇2 , (8.127)

and
ẏ = R sin θ θ̇ , ẍ = R sin θ θ̈ + R cos θ θ̇2 , (8.128)

as well as
Ẋ = R φ̇ , Ẍ = R φ̈ , Ẏ = 0 , Ÿ = 0 . (8.129)

We now may write the conserved charge as

Λ =
1

R
(I + MR2 + mR2) φ̇ + mR cos θ θ̇ . (8.130)

This, in turn, allows us to eliminate φ̇ in terms of θ̇ and the constant Λ:

φ̇ =
γ

1 + γ

(
Λ

mR
− θ̇ cos θ

)
, (8.131)
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where

γ =
mR2

I + MR2
. (8.132)

The energy is then

E = 1
2
(I + MR2) φ̇2 + 1

2
m
(
R2 φ̇2 + R2 θ̇2 + 2R2 cos θ φ̇ θ̇

)
+ MgR + mgR(1− cos θ)

= 1
2
mR2

{(
1 + γ sin2θ

1 + γ

)
θ̇2 +

2g

R
(1− cos θ) +

γ

1 + γ

(
Λ

mR

)2

+
2Mg

mR

}
. (8.133)

The last two terms inside the big bracket are constant, so we can write this as(
1 + γ sin2θ

1 + γ

)
θ̇2 +

2g

R
(1− cos θ) =

4gk

R
. (8.134)

Here, k is a dimensionless measure of the energy of the system, after subtracting
the aforementioned constants. If k > 1, then θ̇2 > 0 for all θ, which would result
in ‘loop-the-loop’ motion of the point mass inside the hoop – provided, that is, the
normal force of the hoop doesn’t vanish and the point mass doesn’t detach from the
hoop’s surface.

Equation motion for θ(t)

The equation of motion for θ obtained by eliminating all other variables from the
original set of ten equations is the same as Ė = 0, and may be written(

1 + γ sin2θ

1 + γ

)
θ̈ +

(
γ sin θ cos θ

1 + γ

)
θ̇2 = − g

R
. (8.135)

We can use this to write θ̈ in terms of θ̇2, and, after invoking eqn. 8.134, in terms of
θ itself. We find

θ̇2 =
4g

R
·
(

1 + γ

1 + γ sin2θ

)(
k − sin2 1

2
θ
)

(8.136)

θ̈ = − g

R
· (1 + γ) sin θ(

1 + γ sin2θ
)2 [4γ (k − sin2 1

2
θ
)
cos θ + 1 + γ sin2θ

]
. (8.137)

Forces of constraint

We can solve for the λj, and thus obtain the forces of constraint Qσ =
∑

j λj
∂Gj

∂qσ
.
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λ3 = mẍ = mR φ̈ + mR cos θ θ̈ −mR sin θ θ̇2

=
mR

1 + γ

[
θ̈ cos θ − θ̇2 sin θ

]
(8.138)

λ4 = mÿ + mg = mg + mR sin θ θ̈ + mR cos θ θ̇2

= mR
[
θ̈ sin θ + θ̇2 sin θ +

g

R

]
(8.139)

λ1 = − I

R
φ̈ =

(1 + γ)I

mR2
λ3 (8.140)

λ2 = (M + m)g + mÿ = λ4 + Mg . (8.141)

One can check that λ3 cos θ + λ4 sin θ = 0.

The condition that the normal force of the hoop on the point mass vanish is λ3 = 0,
which entails λ4 = 0. This gives

−(1 + γ sin2θ) cos θ = 4(1 + γ)
(
k − sin2 1

2
θ
)

. (8.142)

Note that this requires cos θ < 0, i.e. the point of detachment lies above the horizontal
diameter of the hoop. Clearly if k is sufficiently large, the equality cannot be satisfied,
and the point mass executes a periodic ‘loop-the-loop’ motion. In particular, setting
θ = π, we find that

kc = 1 +
1

4(1 + γ)
. (8.143)

If k > kc, then there is periodic ‘loop-the-loop’ motion. If k < kc, then the point mass
may detach at a critical angle θ∗, but only if the motion allows for cos θ < 0. From
the energy conservation equation, we have that the maximum value of θ achieved
occurs when θ̇ = 0, which means

cos θmax = 1− 2k . (8.144)

If 1
2

< k < kc, then, we have the possibility of detachment. This means the energy
must be large enough but not too large.
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