PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM \#2

[1] A point mass m slides frictionlessly, under the influence of gravity, along a massive ring of radius a and mass M. The ring is affixed by horizontal springs to two fixed vertical surfaces, as depicted in fig. 1. All motion is within the plane of the figure.

Figure 1: A point mass m slides frictionlessly along a massive ring of radius a and mass M, which is affixed by horizontal springs to two fixed vertical surfaces.
(a) Choose as generalized coordinates the horizontal displacement X of the center of the ring with respect to equilibrium, and the angle θ a radius to the mass m makes with respect to the vertical (see fig. 1). You may assume that at $X=0$ the springs are both unstretched. Find the Lagrangian $L(X, \theta, \dot{X}, \dot{\theta}, t)$.

[15 points]

The coordinates of the mass point are

$$
x=X+a \sin \theta \quad, \quad y=-a \cos \theta .
$$

The kinetic energy is

$$
\begin{aligned}
T & =\frac{1}{2} M \dot{X}^{2}+\frac{1}{2} m(\dot{X}+a \cos \theta \dot{\theta})^{2}+\frac{1}{2} m a^{2} \sin ^{2} \theta \dot{\theta}^{2} \\
& =\frac{1}{2}(M+m) \dot{X}^{2}+\frac{1}{2} m a^{2} \dot{\theta}^{2}+m a \cos \theta \dot{X} \dot{\theta} .
\end{aligned}
$$

The potential energy is

$$
U=k X^{2}-m g a \cos \theta .
$$

Thus, the Lagrangian is

$$
L=\frac{1}{2}(M+m) \dot{X}^{2}+\frac{1}{2} m a^{2} \dot{\theta}^{2}+m a \cos \theta \dot{X}-k X^{2}+m g a \cos \theta .
$$

(b) Find the generalized momenta p_{X} and p_{θ}, and the generalized forces F_{X} and F_{θ} [10 points]

We have

$$
p_{X}=\frac{\partial L}{\partial \dot{X}}=(M+m) \dot{X}+m a \cos \theta \dot{\theta} \quad, \quad p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m a^{2} \dot{\theta}+m a \cos \theta \dot{X} .
$$

For the forces,

$$
F_{X}=\frac{\partial L}{\partial X}=-2 k X \quad, \quad F_{\theta}=\frac{\partial L}{\partial \theta}=-m a \sin \theta \dot{X} \dot{\theta}-m g a \sin \theta .
$$

(c) Derive the equations of motion.
[15 points]
The equations of motion are

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{\sigma}}\right)=\frac{\partial L}{\partial q_{\sigma}}
$$

for each generalized coordinate q_{σ}. For X we have

$$
(M+m) \ddot{X}+m a \cos \theta \ddot{\theta}-m a \sin \theta \dot{\theta}^{2}=-2 k X .
$$

For θ,

$$
m a^{2} \ddot{\theta}+m a \cos \theta \ddot{X}=-m g a \sin \theta .
$$

(d) Find expressions for all conserved quantities.
[10 points]
Horizontal and vertical translational symmetries are broken by the springs and by gravity, respectively. The remaining symmetry is that of time translation. From $\frac{d H}{d t}=-\frac{\partial L}{\partial t}$, we have that $H=\sum_{\sigma} p_{\sigma} \dot{q}_{\sigma}-L$ is conserved. For this problem, the kinetic energy is a homogeneous function of degree 2 in the generalized velocities, and the potential is velocity-independent. Thus,

$$
H=T+U=\frac{1}{2}(M+m) \dot{X}^{2}+\frac{1}{2} m a^{2} \dot{\theta}^{2}+m a \cos \theta \dot{X} \dot{\theta}+k X^{2}-m g a \cos \theta .
$$

[2] A point particle of mass m moves in three dimensions in a helical potential

$$
U(\rho, \phi, z)=U_{0} \rho \cos \left(\phi-\frac{2 \pi z}{b}\right) .
$$

We call b the pitch of the helix.
(a) Write down the Lagrangian, choosing (ρ, ϕ, z) as generalized coordinates. [10 points]

The Lagrangian is

$$
L=\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)-U_{0} \rho \cos \left(\phi-\frac{2 \pi z}{b}\right)
$$

(b) Find the equations of motion.
[20 points]
Clearly

$$
p_{\rho}=m \dot{\rho} \quad, \quad p_{\phi}=m \rho^{2} \dot{\phi} \quad, \quad p_{z}=m \dot{z}
$$

and
$F_{\rho}=m \rho \dot{\phi}^{2}-U_{0} \cos \left(\phi-\frac{2 \pi z}{b}\right) \quad, \quad F_{\phi}=U_{0} \rho \sin \left(\phi-\frac{2 \pi z}{b}\right) \quad, \quad F_{z}=-\frac{2 \pi U_{0}}{b} \rho \sin \left(\phi-\frac{2 \pi z}{b}\right)$.
Thus, the equation of motion are

$$
\begin{aligned}
m \ddot{\rho} & =m \rho \dot{\phi}^{2}-U_{0} \cos \left(\phi-\frac{2 \pi z}{b}\right) \\
m \rho^{2} \ddot{\phi}+2 m \rho \dot{\rho} \dot{\phi} & =U_{0} \rho \sin \left(\phi-\frac{2 \pi z}{b}\right) \\
m \ddot{z} & =-\frac{2 \pi U_{0}}{b} \rho \sin \left(\phi-\frac{2 \pi z}{b}\right) .
\end{aligned}
$$

(c) Show that there exists a continuous one-parameter family of coordinate transformations which leaves L invariant. Find the associated conserved quantity, Λ. Is anything else conserved?
[20 points]
Due to the helical symmetry, we have that

$$
\phi \rightarrow \phi+\zeta \quad, \quad z \rightarrow z+\frac{b}{2 \pi} \zeta
$$

is such a continuous one-parameter family of coordinate transformations. Since it leaves
the combination $\phi-\frac{2 \pi z}{b}$ unchanged, we have that $\frac{d L}{d \zeta}=0$, and

$$
\begin{aligned}
\Lambda & =\left.p_{\rho} \frac{\partial \rho}{\partial \zeta}\right|_{\zeta=0}+\left.p_{\phi} \frac{\partial \phi}{\partial \zeta}\right|_{\zeta=0}+\left.p_{z} \frac{\partial z}{\partial \zeta}\right|_{\zeta=0} \\
& =p_{\phi}+\frac{b}{2 \pi} p_{z} \\
& =m \rho^{2} \dot{\phi}+\frac{m b}{2 \pi} \dot{z}
\end{aligned}
$$

is the conserved Noether 'charge'. The other conserved quantity is the Hamiltonian,

$$
H=\frac{1}{2} m\left(\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)+U_{0} \rho \cos \left(\phi-\frac{2 \pi z}{b}\right) .
$$

Note that $H=T+U$, because T is homogeneous of degree 2 and U is homogeneous of degree 0 in the generalized velocities.

