
PHYSICS 110A : CLASSICAL MECHANICS
MIDTERM EXAM #1

[1] A particle of mass m moves in the one-dimensional potential

U(x) =
U

0

a4

(

x2 − a2
)2

. (1)

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as x → ±∞.
[15 points]

Solution : Clearly the minima lie at x = ±a and there is a local maximum at x = 0.

Figure 1: Sketch of the double well potential U(x) = (U0/a
4)(x2 −a2)2, here with distances

in units of a, and associated phase curves. The separatrix is the phase curve which runs
through the origin. Shown in red is the phase curve for U = 1

2
U0, consisting of two deformed

ellipses. For U = 2U0, the phase curve is connected, lying outside the separatrix.
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(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which
exist, and identify their energies. Also sketch all the phase curves for motions with total
energy E = 1

2
U

0
. Do the same for E = 2U

0
.

[15 points]

Solution : See Fig. 1 for the phase curves. Clearly U(±a) = 0 is the minimum of the

potential, and U(0) = U
0

is the local maximum and the energy of the separatrix. Thus,

E = 1

2
U

0
cuts through the potential in both wells, and the phase curves at this energy form

two disjoint sets. For E < U
0

there are four turning points, at

x
1,< = −a

√

1 +

√

E

U0

, x
1,> = −a

√

1 −
√

E

U0

and

x
2,< = a

√

1 −
√

E

U0

, x
2,> = a

√

1 +

√

E

U0

For E = 2U
0
, the energy is above that of the separatrix, and there are only two turning

points, x
1,< and x

2,>. The phase curve is then connected.

(c) The phase space dynamics are written as ϕ̇ = V (ϕ), where ϕ =

(

x
ẋ

)

. Find the upper

and lower components of the vector field V .
[10 points]

Solution :
d

dt

(

x
ẋ

)

=

(

ẋ
− 1

m U ′(x)

)

=

(

ẋ

−4U0

a2 x (x2 − a2)

)

. (2)

(d) Derive and expression for the period T of the motion when the system exhibits small
oscillations about a potential minimum.
[10 points]

Solution : Set x = ±a + η and Taylor expand:

U(±a + η) =
4U0

a2
η2 + O(η3) . (3)

Equating this with 1

2
k η2, we have the effective spring constant k = 8U

0
/a2, and the small

oscillation frequency

ω
0

=

√

k

m
=

√

8U0

ma2
. (4)

The period is 2π/ω
0
.
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[2] An R-L-C circuit is shown in fig. 2. The resistive element is a light bulb. The inductance
is L = 400µH; the capacitance is C = 1µF; the resistance is R = 32Ω. The voltage V (t)

oscillates sinusoidally, with V (t) = V
0
cos(ωt), where V

0
= 4V. In this problem, you may

neglect all transients; we are interested in the late time, steady state operation of this
circuit. Recall the relevant MKS units:

1Ω = 1V · s /C , 1F = 1C /V , 1H = 1V · s2/C .

Figure 2: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped?
[10 points]

Solution : We have

ω
0

= (LC)−1/2 = 5 × 104 s−1 , β =
R

2L
= 4 × 104 s−1 .

Thus, ω2
0

> β2 and the circuit is underdamped .

(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is

greater than a threshold Pth = 2

9
W . For fixed V

0
= 4V, find the frequency range for ω over

which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is
PR(t) = I2(t)R. (Average this over a cycle to get the average power dissipated.)
[20 points]

Solution : The charge on the capacitor plate obeys the ODE

L Q̈ + R Q̇ +
Q

C
= V (t) .

The solution is

Q(t) = Q
hom

(t) + A(ω)
V0

L
cos

(

ωt − δ(ω)
)

,

3



with

A(ω) =
[

(ω2

0 − ω2)2 + 4β2ω2

]

−1/2

, δ(ω) = tan−1

(

2βω

ω2
0
− ω2

)

.

Thus, ignoring the transients, the power dissipated by the bulb is

PR(t) = Q̇2(t)R

= ω2A2(ω)
V 2

0
R

L2
sin2

(

ωt − δ(ω)
)

.

Averaging over a period, we have 〈 sin2(ωt − δ) 〉 = 1

2
, so

〈PR 〉 = ω2A2(ω)
V 2

0
R

2L2
=

V 2
0

2R
· 4β2ω2

(ω2
0
− ω2)2 + 4β2ω2

.

Now V 2
0
/2R = 1

4
W. So P

th
= αV 2

0
/2R, with α = 8

9
. We then set 〈PR〉 = P

th
, whence

(1 − α) · 4β2ω2 = α (ω2

0 − ω2)2 .

The solutions are

ω = ±
√

1 − α

α
β +

√

(

1 − α

α

)

β2 + ω2
0

=
(

3
√

3 ±
√

2
)

× 1000 s−1 .

(c) Compare the expressions for the instantaneous power dissipated by the voltage source,

PV (t), and the power dissipated by the resistor PR(t) = I2(t)R. If PV (t) 6= PR(t), where

does the power extra power go or come from? What can you say about the averages of PV

and PR(t) over a cycle? Explain your answer.
[20 points]

Solution : The instantaneous power dissipated by the voltage source is

PV (t) = V (t) I(t) = −ω A
V0

L
sin(ωt − δ) cos(ωt)

= ω A
V0

2L

(

sin δ − sin(2ωt − δ)
)

.

As we have seen, the power dissipated by the bulb is

PR(t) = ω2A2
V 2

0
R

L2
sin2(ωt − δ) .

These two quantities are not identical, but they do have identical time averages over one
cycle:

〈PV (t) 〉 = 〈PR(t) 〉 =
V 2

0

2R
· 4β2 ω2 A2(ω) .

Energy conservation means
PV (t) = PR(t) + Ė(t) ,

where

E(t) =
LQ̇2

2
+

Q2

2C

is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of Ė over a

cycle must vanish, which guarantees 〈PV (t) 〉 = 〈PR(t) 〉.
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