PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #1

[1] A particle of mass m moves in the one-dimensional potential

$$U(x) = \frac{U_0}{a^4} \left(x^2 - a^2\right)^2 \,. \tag{1}$$

(a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure that your sketch shows the proper behavior as $x \to \pm \infty$. [15 points]

Solution : Clearly the minima lie at $x = \pm a$ and there is a local maximum at x = 0.

Figure 1: Sketch of the double well potential $U(x) = (U_0/a^4)(x^2 - a^2)^2$, here with distances in units of a, and associated phase curves. The separatrix is the phase curve which runs through the origin. Shown in red is the phase curve for $U = \frac{1}{2}U_0$, consisting of two deformed ellipses. For $U = 2U_0$, the phase curve is connected, lying outside the separatrix.

(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which exist, and identify their energies. Also sketch all the phase curves for motions with total energy $E = \frac{1}{2}U_0$. Do the same for $E = 2U_0$. [15 points]

Solution: See Fig. 1 for the phase curves. Clearly $U(\pm a) = 0$ is the minimum of the potential, and $U(0) = U_0$ is the local maximum and the energy of the separatrix. Thus, $E = \frac{1}{2}U_0$ cuts through the potential in both wells, and the phase curves at this energy form two disjoint sets. For $E < U_0$ there are four turning points, at

$$x_{1,<} = -a\sqrt{1 + \sqrt{\frac{E}{U_0}}}$$
, $x_{1,>} = -a\sqrt{1 - \sqrt{\frac{E}{U_0}}}$

and

$$x_{2,<} = a \sqrt{1 - \sqrt{\frac{E}{U_0}}}$$
 , $x_{2,>} = a \sqrt{1 + \sqrt{\frac{E}{U_0}}}$

For $E = 2U_0$, the energy is above that of the separatrix, and there are only two turning points, $x_{1,<}$ and $x_{2,>}$. The phase curve is then connected.

(c) The phase space dynamics are written as $\dot{\varphi} = V(\varphi)$, where $\varphi = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}$. Find the upper and lower components of the vector field V. [10 points]

Solution :

$$\frac{d}{dt} \begin{pmatrix} x\\ \dot{x} \end{pmatrix} = \begin{pmatrix} \dot{x}\\ -\frac{1}{m} U'(x) \end{pmatrix} = \begin{pmatrix} \dot{x}\\ -\frac{4U_0}{a^2} x (x^2 - a^2) \end{pmatrix} .$$
(2)

(d) Derive and expression for the period T of the motion when the system exhibits small oscillations about a potential minimum.[10 points]

Solution : Set $x = \pm a + \eta$ and Taylor expand:

$$U(\pm a + \eta) = \frac{4U_0}{a^2} \eta^2 + \mathcal{O}(\eta^3) .$$
 (3)

Equating this with $\frac{1}{2}k \eta^2$, we have the effective spring constant $k = 8U_0/a^2$, and the small oscillation frequency

$$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{8U_0}{ma^2}} \,. \tag{4}$$

The period is $2\pi/\omega_0$.

[2] An *R-L-C* circuit is shown in fig. 2. The resistive element is a light bulb. The inductance is $L = 400 \,\mu\text{H}$; the capacitance is $C = 1 \,\mu\text{F}$; the resistance is $R = 32 \,\Omega$. The voltage V(t)oscillates sinusoidally, with $V(t) = V_0 \cos(\omega t)$, where $V_0 = 4 \,\text{V}$. In this problem, you may neglect all transients; we are interested in the late time, steady state operation of this circuit. Recall the relevant MKS units:

 $1\,\Omega = 1\,V\cdot s\,/\,C \quad,\quad 1\,F = 1\,C\,/\,V \quad,\quad 1\,H = 1\,V\cdot s^2/\,C \ .$

Figure 2: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped?[10 points]

Solution : We have

$$\omega_0 = (LC)^{-1/2} = 5 \times 10^4 \,\mathrm{s}^{-1}$$
 , $\beta = \frac{R}{2L} = 4 \times 10^4 \,\mathrm{s}^{-1}$.

Thus, $\omega_0^2 > \beta^2$ and the circuit is *underdamped*.

(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is greater than a threshold $P_{\rm th} = \frac{2}{9} W$. For fixed $V_0 = 4 \,\mathrm{V}$, find the frequency range for ω over which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is $P_R(t) = I^2(t)R$. (Average this over a cycle to get the average power dissipated.) [20 points]

Solution : The charge on the capacitor plate obeys the ODE

$$L\ddot{Q} + R\dot{Q} + \frac{Q}{C} = V(t) \; .$$

The solution is

$$Q(t) = Q_{\text{hom}}(t) + A(\omega) \frac{V_0}{L} \cos\left(\omega t - \delta(\omega)\right) \,,$$

with

$$A(\omega) = \left[(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2 \right]^{-1/2} , \quad \delta(\omega) = \tan^{-1} \left(\frac{2\beta\omega}{\omega_0^2 - \omega^2} \right) .$$

Thus, ignoring the transients, the power dissipated by the bulb is

$$\begin{split} P_R(t) &= \dot{Q}^2(t) \, R \\ &= \omega^2 A^2(\omega) \, \frac{V_0^2 R}{L^2} \sin^2 \bigl(\omega t - \delta(\omega) \bigr) \, . \end{split}$$

Averaging over a period, we have $\langle \sin^2(\omega t - \delta) \rangle = \frac{1}{2}$, so

$$\langle P_R \, \rangle = \omega^2 A^2(\omega) \, \frac{V_0^2 R}{2L^2} = \frac{V_0^2}{2 \, R} \cdot \frac{4\beta^2 \omega^2}{(\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2} \, . \label{eq:PR}$$

Now $V_0^2/2R = \frac{1}{4}$ W. So $P_{\rm th} = \alpha V_0^2/2R$, with $\alpha = \frac{8}{9}$. We then set $\langle P_R \rangle = P_{\rm th}$, whence $(1-\alpha) \cdot 4\beta^2 \omega^2 = \alpha (\omega_0^2 - \omega^2)^2$.

The solutions are

$$\omega = \pm \sqrt{\frac{1-\alpha}{\alpha}} \beta + \sqrt{\left(\frac{1-\alpha}{\alpha}\right)\beta^2 + \omega_0^2} = \left(3\sqrt{3} \pm \sqrt{2}\right) \times 1000 \,\mathrm{s}^{-1} \,.$$

(c) Compare the expressions for the instantaneous power dissipated by the voltage source, $P_V(t)$, and the power dissipated by the resistor $P_R(t) = I^2(t)R$. If $P_V(t) \neq P_R(t)$, where does the power extra power go or come from? What can you say about the averages of P_V and $P_R(t)$ over a cycle? Explain your answer. [20 points]

Solution : The instantaneous power dissipated by the voltage source is

$$\begin{split} P_V(t) &= V(t) I(t) = -\omega A \frac{V_0}{L} \sin(\omega t - \delta) \cos(\omega t) \\ &= \omega A \frac{V_0}{2L} \left(\sin \delta - \sin(2\omega t - \delta) \right) \,. \end{split}$$

As we have seen, the power dissipated by the bulb is

$$P_R(t) = \omega^2 A^2 \frac{V_0^2 R}{L^2} \sin^2(\omega t - \delta)$$

These two quantities are not identical, but they do have identical time averages over one cycle:

$$\langle P_V(t) \rangle = \langle P_R(t) \rangle = \frac{V_0^2}{2R} \cdot 4\beta^2 \, \omega^2 \, A^2(\omega) \, .$$

Energy conservation means

$$P_V(t) = P_R(t) + \dot{E}(t) \ ,$$

where

$$E(t) = \frac{L\dot{Q}^2}{2} + \frac{Q^2}{2C}$$

is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of \dot{E} over a cycle must vanish, which guarantees $\langle P_V(t) \rangle = \langle P_R(t) \rangle$.