PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM \#1

[1] A particle of mass m moves in the one-dimensional potential

$$
\begin{equation*}
U(x)=\frac{U_{0}}{a^{4}}\left(x^{2}-a^{2}\right)^{2} . \tag{1}
\end{equation*}
$$

(a) Sketch $U(x)$. Identify the location(s) of any local minima and/or maxima, and be sure that your sketch shows the proper behavior as $x \rightarrow \pm \infty$.

[15 points]

Solution : Clearly the minima lie at $x= \pm a$ and there is a local maximum at $x=0$.

Figure 1: Sketch of the double well potential $U(x)=\left(U_{0} / a^{4}\right)\left(x^{2}-a^{2}\right)^{2}$, here with distances in units of a, and associated phase curves. The separatrix is the phase curve which runs through the origin. Shown in red is the phase curve for $U=\frac{1}{2} U_{0}$, consisting of two deformed ellipses. For $U=2 U_{0}$, the phase curve is connected, lying outside the separatrix.
(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which exist, and identify their energies. Also sketch all the phase curves for motions with total energy $E=\frac{1}{2} U_{0}$. Do the same for $E=2 U_{0}$.
[15 points]
Solution: See Fig. 1 for the phase curves. Clearly $U(\pm a)=0$ is the minimum of the potential, and $U(0)=U_{0}$ is the local maximum and the energy of the separatrix. Thus, $E=\frac{1}{2} U_{0}$ cuts through the potential in both wells, and the phase curves at this energy form two disjoint sets. For $E<U_{0}$ there are four turning points, at

$$
x_{1,<}=-a \sqrt{1+\sqrt{\frac{E}{U_{0}}}} \quad, \quad x_{1,>}=-a \sqrt{1-\sqrt{\frac{E}{U_{0}}}}
$$

and

$$
x_{2,<}=a \sqrt{1-\sqrt{\frac{E}{U_{0}}}} \quad, \quad x_{2,>}=a \sqrt{1+\sqrt{\frac{E}{U_{0}}}}
$$

For $E=2 U_{0}$, the energy is above that of the separatrix, and there are only two turning points, $x_{1,<}$ and $x_{2,>}$. The phase curve is then connected.
(c) The phase space dynamics are written as $\dot{\boldsymbol{\varphi}}=\boldsymbol{V}(\boldsymbol{\varphi})$, where $\boldsymbol{\varphi}=\binom{x}{\dot{x}}$. Find the upper and lower components of the vector field \boldsymbol{V}.

```
[10 points]
```

Solution :

$$
\begin{equation*}
\frac{d}{d t}\binom{x}{\dot{x}}=\binom{\dot{x}}{-\frac{1}{m} U^{\prime}(x)}=\binom{\dot{x}}{-\frac{4 U_{0}}{a^{2}} x\left(x^{2}-a^{2}\right)} \tag{2}
\end{equation*}
$$

(d) Derive and expression for the period T of the motion when the system exhibits small oscillations about a potential minimum.

[10 points]

Solution : Set $x= \pm a+\eta$ and Taylor expand:

$$
\begin{equation*}
U(\pm a+\eta)=\frac{4 U_{0}}{a^{2}} \eta^{2}+\mathcal{O}\left(\eta^{3}\right) \tag{3}
\end{equation*}
$$

Equating this with $\frac{1}{2} k \eta^{2}$, we have the effective spring constant $k=8 U_{0} / a^{2}$, and the small oscillation frequency

$$
\begin{equation*}
\omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{8 U_{0}}{m a^{2}}} \tag{4}
\end{equation*}
$$

The period is $2 \pi / \omega_{0}$.
[2] An R - L - C circuit is shown in fig. 2. The resistive element is a light bulb. The inductance is $L=400 \mu \mathrm{H}$; the capacitance is $C=1 \mu \mathrm{~F}$; the resistance is $R=32 \Omega$. The voltage $V(t)$ oscillates sinusoidally, with $V(t)=V_{0} \cos (\omega t)$, where $V_{0}=4 \mathrm{~V}$. In this problem, you may neglect all transients; we are interested in the late time, steady state operation of this circuit. Recall the relevant MKS units:

$$
1 \Omega=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{C}, \quad 1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}, \quad 1 \mathrm{H}=1 \mathrm{~V} \cdot \mathrm{~s}^{2} / \mathrm{C}
$$

Figure 2: An R - L - C circuit in which the resistive element is a light bulb.
(a) Is this circuit underdamped or overdamped?
[10 points]
Solution: We have

$$
\omega_{0}=(L C)^{-1 / 2}=5 \times 10^{4} \mathrm{~s}^{-1} \quad, \quad \beta=\frac{R}{2 L}=4 \times 10^{4} \mathrm{~s}^{-1}
$$

Thus, $\omega_{0}^{2}>\beta^{2}$ and the circuit is underdamped.
(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is greater than a threshold $P_{\text {th }}=\frac{2}{9} W$. For fixed $V_{0}=4 \mathrm{~V}$, find the frequency range for ω over which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is $P_{R}(t)=I^{2}(t) R$. (Average this over a cycle to get the average power dissipated.) [20 points]

Solution : The charge on the capacitor plate obeys the ODE

$$
L \ddot{Q}+R \dot{Q}+\frac{Q}{C}=V(t)
$$

The solution is

$$
Q(t)=Q_{\mathrm{hom}}(t)+A(\omega) \frac{V_{0}}{L} \cos (\omega t-\delta(\omega))
$$

with

$$
A(\omega)=\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}\right]^{-1 / 2} \quad, \quad \delta(\omega)=\tan ^{-1}\left(\frac{2 \beta \omega}{\omega_{0}^{2}-\omega^{2}}\right)
$$

Thus, ignoring the transients, the power dissipated by the bulb is

$$
\begin{aligned}
P_{R}(t) & =\dot{Q}^{2}(t) R \\
& =\omega^{2} A^{2}(\omega) \frac{V_{0}^{2} R}{L^{2}} \sin ^{2}(\omega t-\delta(\omega)) .
\end{aligned}
$$

Averaging over a period, we have $\left\langle\sin ^{2}(\omega t-\delta)\right\rangle=\frac{1}{2}$, so

$$
\left\langle P_{R}\right\rangle=\omega^{2} A^{2}(\omega) \frac{V_{0}^{2} R}{2 L^{2}}=\frac{V_{0}^{2}}{2 R} \cdot \frac{4 \beta^{2} \omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \beta^{2} \omega^{2}} .
$$

Now $V_{0}^{2} / 2 R=\frac{1}{4} \mathrm{~W}$. So $P_{\text {th }}=\alpha V_{0}^{2} / 2 R$, with $\alpha=\frac{8}{9}$. We then set $\left\langle P_{R}\right\rangle=P_{\text {th }}$, whence

$$
(1-\alpha) \cdot 4 \beta^{2} \omega^{2}=\alpha\left(\omega_{0}^{2}-\omega^{2}\right)^{2}
$$

The solutions are

$$
\omega= \pm \sqrt{\frac{1-\alpha}{\alpha}} \beta+\sqrt{\left(\frac{1-\alpha}{\alpha}\right) \beta^{2}+\omega_{0}^{2}}=(3 \sqrt{3} \pm \sqrt{2}) \times 1000 \mathrm{~s}^{-1}
$$

(c) Compare the expressions for the instantaneous power dissipated by the voltage source, $P_{V}(t)$, and the power dissipated by the resistor $P_{R}(t)=I^{2}(t) R$. If $P_{V}(t) \neq P_{R}(t)$, where does the power extra power go or come from? What can you say about the averages of P_{V} and $P_{R}(t)$ over a cycle? Explain your answer.
[20 points]
Solution: The instantaneous power dissipated by the voltage source is

$$
\begin{aligned}
P_{V}(t)=V(t) I(t) & =-\omega A \frac{V_{0}}{L} \sin (\omega t-\delta) \cos (\omega t) \\
& =\omega A \frac{V_{0}}{2 L}(\sin \delta-\sin (2 \omega t-\delta))
\end{aligned}
$$

As we have seen, the power dissipated by the bulb is

$$
P_{R}(t)=\omega^{2} A^{2} \frac{V_{0}^{2} R}{L^{2}} \sin ^{2}(\omega t-\delta)
$$

These two quantities are not identical, but they do have identical time averages over one cycle:

$$
\left\langle P_{V}(t)\right\rangle=\left\langle P_{R}(t)\right\rangle=\frac{V_{0}^{2}}{2 R} \cdot 4 \beta^{2} \omega^{2} A^{2}(\omega)
$$

Energy conservation means

$$
P_{V}(t)=P_{R}(t)+\dot{E}(t)
$$

where

$$
E(t)=\frac{L \dot{Q}^{2}}{2}+\frac{Q^{2}}{2 C}
$$

is the energy in the inductor and capacitor. Since $Q(t)$ is periodic, the average of \dot{E} over a cycle must vanish, which guarantees $\left\langle P_{V}(t)\right\rangle=\left\langle P_{R}(t)\right\rangle$.

