PHYSICS 110A : CLASSICAL MECHANICS PROBLEM SET \#2

[1] Show explicitly that $x(t)=(C+D t) \exp (-\beta t)$ is a solution to the damped harmonic oscillator equation $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0$ when $\omega_{0}=\beta$.
[2] Consider the third order equation

$$
\begin{align*}
\dddot{x}+(2 \beta+\gamma) \ddot{x}+\left(\omega_{0}^{2}+2 \beta \gamma\right) \dot{x}+\gamma \omega_{0}^{2} x & =f_{0} \cos (\Omega t) \tag{1}\\
& =\left(\frac{d}{d t}+\gamma\right)\left(\frac{d^{2}}{d t^{2}}+2 \beta \frac{d}{d t}+\omega_{0}^{2}\right) x . \tag{2}
\end{align*}
$$

(a) Find the most general solution.
(b) Show that for long times the solution takes the form

$$
\begin{equation*}
x(t)=A(\Omega) f_{0} \cos (\Omega t-\delta(\Omega)), \tag{3}
\end{equation*}
$$

and find $A(\Omega)$ and $\delta(\Omega)$.
(c) Under what conditions does $A(\Omega)$ have a maximum at a nonzero value of Ω ?
[3] Use the Green's function method to determine the response of a damped oscillator to a forcing function of the form

$$
\begin{equation*}
f(t)=f_{0} e^{-\gamma t} \sin (\Omega t) \Theta(t) \tag{4}
\end{equation*}
$$

where $\Theta(t)$ is the step function.
[4] A grandfather clock has a pendulum length of 0.7 m and a bob of mass $m=0.4 \mathrm{~kg}$. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillations steady at 0.03 rad . What is the Q of the system?
[5] Consider the equation

$$
\begin{equation*}
\dot{x}+\gamma x=f(t) . \tag{5}
\end{equation*}
$$

Show that the general solution to this problem may be written

$$
\begin{equation*}
x(t)=x_{\mathrm{h}}(t)+\int_{-\infty}^{t} d t^{\prime} G\left(t-t^{\prime}\right) f\left(t^{\prime}\right) \tag{6}
\end{equation*}
$$

and find the general form of the homogeneous solution $x_{\mathrm{h}}(t)$ as well as the Green's function $G\left(t-t^{\prime}\right)$. Hint: $G\left(t-t^{\prime}\right)$ may be evaluated either by contour integration, or by deriving and using the result

$$
\begin{equation*}
\left(\frac{d}{d t}+\gamma\right) G\left(t-t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \tag{7}
\end{equation*}
$$

