PHYSICS 110A : CLASSICAL MECHANICS DISCUSSION \#2 PROBLEMS

[1] Solve the equation

$$
\begin{equation*}
L_{t} x \equiv \dddot{x}+(a+b+c) \ddot{x}+(a b+a c+b c) \dot{x}+a b c x=f_{0} \cos (\Omega t) \tag{1}
\end{equation*}
$$

Solution - The key to solving this was the hint that the differential operator L_{t} could be written as

$$
\begin{align*}
L_{t} & =\frac{d^{3}}{d t^{3}}+(a+b+c) \frac{d^{2}}{d t^{2}}+(a b+a c+b c) \frac{d}{d t}+a b c \\
& =\left(\frac{d}{d t}+a\right)\left(\frac{d}{d t}+b\right)\left(\frac{d}{d t}+c\right) \tag{2}
\end{align*}
$$

which says that the third order differential operator appearing in the ODE is in fact a product of first order differential operators. Since

$$
\begin{equation*}
\frac{d x}{d t}+\alpha x=0 \quad \Longrightarrow \quad x(t)=A e^{-\alpha x} \tag{3}
\end{equation*}
$$

we see that the homogeneous solution takes the form

$$
\begin{equation*}
x_{\mathrm{h}}(t)=A e^{-a t}+B e^{-b t}+C e^{-c t} \tag{4}
\end{equation*}
$$

where A, B, and C are constants.
To find the inhomogeneous solution, we solve $L_{t} x=f_{0} e^{-i \Omega t}$ and take the real part. Writing $x(t)=x_{0} e^{-i \Omega t}$, we have

$$
\begin{equation*}
L_{t} x_{0} e^{-i \Omega t}=(a-i \Omega)(b-i \Omega)(c-i \Omega) x_{0} e^{-i \Omega t} \tag{5}
\end{equation*}
$$

and thus

$$
x_{0}=\frac{f_{0} e^{-i \Omega t}}{(a-i \Omega)(b-i \Omega)(c-i \Omega)} \equiv A(\Omega) e^{i \delta} f_{0} e^{-i \Omega t}
$$

where

$$
\begin{align*}
A(\Omega) & =\left[\left(a^{2}+\Omega^{2}\right)\left(b^{2}+\Omega^{2}\right)\left(c^{2}+\Omega^{2}\right)\right]^{-1 / 2} \tag{6}\\
\delta(\Omega) & =\tan ^{-1}\left(\frac{\Omega}{a}\right)+\tan ^{-1}\left(\frac{\Omega}{b}\right)+\tan ^{-1}\left(\frac{\Omega}{c}\right) \tag{7}
\end{align*}
$$

Thus, the most general solution to $L_{t} x(t)=f_{0} \cos (\Omega t)$ is

$$
\begin{equation*}
x(t)=A(\Omega) f_{0} \cos (\Omega t-\delta(\Omega))+A e^{-a t}+B e^{-b t}+C e^{-c t} . \tag{8}
\end{equation*}
$$

Note that the phase shift increases monotonically from $\delta(0)=0$ to $\delta(\infty)=\frac{3}{2} \pi$.
[2] Consider the potential

$$
\begin{equation*}
U(x)=U_{0}\left(x^{2}-a^{2}\right)\left(x^{2}-4 a^{2}\right)\left(x^{2}-9 a^{2}\right) . \tag{9}
\end{equation*}
$$

Sketch $U(x)$ and the phase curves.
Solution - Clearly $U(x \rightarrow \pm \infty)=\infty$, and $U(x)$ has zeros at $x= \pm a, x= \pm 2 a$, and $x= \pm 3 a$. Setting $U^{\prime}(x)=0$ we obtain $x=0$ and also a quadratic equation in x^{2}, with roots at $x^{2}=7 a^{2}$ and $x^{2}=\frac{7}{3} a^{2}$. Plugging in, we find the three local minima, at $x= \pm \sqrt{7} a$ and $x=0$ are all degenerate, with $U=-36 U_{0} a^{6}$, and the two maxima at $x= \pm \sqrt{\frac{7}{3}} a$ have $U=\frac{400}{27} U_{0} a^{6}$. This is a nice problem for Ben Schmidel's phase plotter.

Figure 1: $U(x)=\left(x^{2}-1\right)\left(x^{2}-4\right)\left(x^{2}-9\right)$ and associated phase curves.
[3] Consider the van der Pol oscillator,

$$
\begin{equation*}
\ddot{x}+2 \mu\left(x^{2}-1\right) \dot{x}+x=0 . \tag{10}
\end{equation*}
$$

Find and classify the fixed point(s), find the nullclines, sketch the phase flow, and argue that a stable limit cycle exists.

Solution - With $v=\dot{x}$, we have

$$
\begin{equation*}
\dot{x}=v \quad, \quad \dot{v}=-x+\mu\left(1-x^{2}\right) v . \tag{11}
\end{equation*}
$$

Since both $\dot{x}=0$ and $\dot{v}=0$ at a fixed point, we find a unique fixed point at $(x, v)=(0,0)$. Linearizing about the fixed point, we write $x=0+\delta x, v=0+\delta v$, with

$$
\frac{d}{d t}\binom{\delta x}{\delta v}=\overbrace{\left(\begin{array}{cc}
0 & 1 \tag{12}\\
-1 & \mu
\end{array}\right)}^{M}\binom{\delta x}{\delta v} .
$$

The matrix M has trace $T=\mu$ and determinant $D=+1$. Thus, according to the fixed point classification scheme derived in class and in the notes, the fixed point $(0,0)$ is a stable node if $\mu>2$ and a stable spiral if $\mu<2$.

The nullclines are curves along which $\dot{x}=0$ or $\dot{v}=0$. The equation of the x nullcline is $v=0$, i.e. the x-axis. Along the x-axis, then, the flow must be purely up or down, with no

Figure 2: Sketch of phase flow for the van der Pol system. Only the generai direction of the flow is shown. Blue line: x nullcline; red line: v nullcline.

Figure 3: Evolution of the van der Pol equation for $\mu=\frac{1}{2}$, starting from two initial conditions. The flow spirals toward the stable limit cycle.
x component. The equation of the v nullcline is

$$
\begin{equation*}
v=\frac{1}{\mu} \frac{x}{1-x^{2}} \tag{13}
\end{equation*}
$$

The nullclines and the flow are sketched in Fig. 2. Note that the x-component of the phase velocity $\dot{\varphi}$ changes sign across an x-nullcline, and the v-componend of $\dot{\varphi}$ changes sign across a v-nullcline.

The limit cycle is shown in Figs. 3 and 4.

Figure 4: $x(t)$ and $v(t)(y(t)$ in this plot) for the van der Pol system, with $\mu=2$.
[4] Consider the following circuit and construct a mechanical analog.

Figure 5: A driven $L-C-R$ circuit, with $V(t)=V_{0} \cos (\omega t)$.

Solution - We invoke Kirchoff's laws around the left and right loops:

$$
\begin{align*}
L_{1} \dot{I}_{1}+\frac{Q_{1}}{C_{1}}+R_{1}\left(I_{1}-I_{2}\right) & =0 \tag{14}\\
L_{2} \dot{I}_{2}+R_{2} I_{2}+R_{1}\left(I_{2}-I_{1}\right) & =V(t) . \tag{15}
\end{align*}
$$

Let $Q_{1}(t)$ be the charge on the left plate of capacitor C_{1}, and define

$$
\begin{equation*}
Q_{2}(t)=\int_{0}^{t} d t^{\prime} I_{2}\left(t^{\prime}\right) \tag{16}
\end{equation*}
$$

Figure 6: The equivalent mechanical circuit.

Then Kirchoff's laws may be written

$$
\begin{align*}
& \ddot{Q}_{1}+\frac{R_{1}}{L_{1}}\left(\dot{Q}_{1}-\dot{Q}_{2}\right)+\frac{1}{L_{1} C_{1}} Q_{1}=0 \tag{17}\\
& \quad \ddot{Q}_{2}+\frac{R_{2}}{L_{2}} \dot{Q}_{2}+\frac{R_{1}}{L_{2}}\left(\dot{Q}_{2}-\dot{Q}_{1}\right)=\frac{V(t)}{L_{2}} . \tag{18}
\end{align*}
$$

Now consider the mechanical system in Fig. 6. The blocks have masses M_{1} and M_{2}. The friction coefficient between blocks 1 and 2 is b_{1}, and the friction coefficient between block 2 and the floor is b_{2}. There is a spring of spring constant k_{1} which connects block 1 to the wall. Finally, block 2 is driven by a periodic acceleration $f_{0} \cos (\omega t)$. We now identify

$$
\begin{equation*}
X_{1} \leftrightarrow Q_{1} \quad, \quad X_{2} \leftrightarrow Q_{2} \quad, \quad b_{1} \leftrightarrow \frac{R_{1}}{L_{1}} \quad, \quad b_{2} \leftrightarrow \frac{R_{2}}{L_{2}} \quad, \quad k_{1} \leftrightarrow \frac{1}{L_{1} C_{1}}, \tag{19}
\end{equation*}
$$

as well as $f(t) \leftrightarrow V(t) / L_{2}$.

