## Proposal

Obtain the mean density of the earth, $\rho$, by measuring the earth's radius $R_{E}$ and the gravitational acceleration $g$ at the surface. Attempt to obtain a final accuracy of $<5 \%$.

Newton's gravitation law states

$$
F=\frac{G M m}{r^{2}},
$$

so the acceleration due to gravity at the surface of the earth is

$$
g=\frac{F}{m}=\frac{G M}{R_{E}^{2}}=\frac{G 4 \pi R_{E}^{3} \rho}{3 R_{E}^{2}}=\frac{4}{3} \pi G \rho R_{E},
$$

which yields

$$
\rho=\frac{3}{4 \pi G} \frac{g}{R_{E}} .
$$

We will measure $R_{E}$ by observing the time of sunset at two elevations: on the beach and on the cliffs at height $h$. We will synchronize watches, and locate observers on the beach and on top of the cliffs on a clear day at sunset. The times at which the upper edge of the sun passes below the horizon will give a time difference $\Delta t$ due to altitude. We will measure the cliff height $h$ by triangulation from a known baseline on the beach.

The figure shows (for a simplified geometry)

$$
\cos (\theta)=\frac{R_{E}}{R_{E}+h},
$$

giving (for $h / R_{E} \ll 1$ )

$$
1-\frac{\theta^{2}}{2} \approx 1-\frac{h}{R_{E}} .
$$

and

$$
R_{E} \approx \frac{2 h}{\theta^{2}} .
$$

Since $\theta=(2 \pi / 24 \mathrm{~h}) \Delta \mathrm{t}=(2 \pi / 86,400 \mathrm{~s}) \Delta \mathrm{t}$ we obtain ${ }^{1}$

$$
R_{E}=2 h\left(\frac{86,400 \mathrm{~s}}{2 \pi \bullet \Delta t}\right)^{2} .
$$



We expect
$R_{E} \sim 6000 \mathrm{~km}$
$h \sim 50 \mathrm{~m}$,
which gives
$\Delta t \sim 56 \mathrm{~s}$.
The estimated uncertainlies in our measreuments are
sunset time $\Delta t \sim \pm 1 \mathrm{~s}= \pm 2 \%$
height $\quad h \sim \pm 1 \mathrm{~m}= \pm 2 \%$

[^0]***COMPLETE THE ERROR ANALYSIS FOR $\mathrm{R}_{\mathrm{e}}$ (use separate page)***

We will measure $g$ by constructing a pendulum and measuring its period.
Referring to the figure,

$$
F=-m g \sin (\phi) \approx-m g \phi .
$$

The acceleration

$$
a=l d^{2} \phi / d t^{2}
$$

leads to

$$
-g \phi=l \frac{d^{2} \phi}{d t^{2}}
$$

The solution is periodic motion, with

$$
\phi=\phi_{0} \cos \left(\sqrt{\frac{g}{l}} t+\theta_{0}\right)=\phi_{0} \cos \left(\frac{2 \pi}{T} t \theta_{0}\right)
$$


so that the period $T$ is

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

The phase, $\theta_{0}$, is set by the initial condition and is unimportant for this analysis.
We will make our pendulum using small diameter, single strand nylon fishing line tied to a ring stand at the top end and to a weight at the bottom end. We will tape a pointer to a fixed position just beneath the equilibrium position of the weight to aid in counting the swings of the pendulum. In order to test for a systematic error in the pendulum due to the stiffness of the string, we will measure the period of the pendulum for more than one length.

We expect

$$
\begin{aligned}
& g \sim 10 \mathrm{~m} / \mathrm{s}^{2}, \\
& l \sim 1 \mathrm{~m}, \\
& \text { giving } \\
& \\
& T \sim 2 \mathrm{~s} .
\end{aligned}
$$

We will count 10 swings $\approx 20 \mathrm{~s}$ with error $\pm 0.2 \mathrm{~s}= \pm 1 \%$. A complementary method is to use the photogate to measure the period.
***INSERT THE ERROR ANALYSIS FOR g (use separate page)***


[^0]:    ${ }^{1}$ Note that a more complete analysis should consider latitude, the angle of the earth's rotation axis, and the height of the measurement on the beach

