Covariance and Correlation

review of error propagation

$$\begin{array}{ll} x = \overline{x} \pm \delta x \\ y = \overline{y} \pm \delta y \end{array} \longrightarrow g(x, y) = \overline{g} \pm \delta g \end{array}$$

$$\delta g \approx \left| \frac{\partial g}{\partial x} \right| \delta x + \left| \frac{\partial g}{\partial y} \right| \delta y$$
 estimate of uncertainty in q

$$\delta g = \sqrt{\left(\frac{\partial g}{\partial x} \delta x\right)^2 + \left(\frac{\partial g}{\partial y} \delta y\right)^2} \quad \text{when errors in } x \text{ and } y \text{ are independent and random}$$

justifies)

$$G_{3} = \sqrt{\left(\frac{\partial g}{\partial x} G_{x}\right)^{2} + \left(\frac{\partial g}{\partial y} G_{y}\right)^{2}}$$

if x and y are governed by <u>independent</u> normal distributions, with standard deviations σ_x and σ_y , q(x,y) are normally distributed with standard deviation σ_q

Covariance

find δq if δx and δy are not independent

N pairs of data
$$(x_1, y_1), ..., (x_N, y_N)$$
 $x_1, ..., x_N \rightarrow \overline{x}$ and \overline{b}_X
 $y_1, ..., y_N \rightarrow \overline{y}$ and \overline{b}_Y
 $g_i = g(x_i, y_i)$
 $g_1, ..., g_N \rightarrow \overline{g}$ and \overline{b}_{g}
 $g_i \approx g(\overline{x}, \overline{y}) + \frac{\partial g}{\partial x}(x_i - \overline{x}) + \frac{\partial g}{\partial y}(y_i - \overline{y})$

$$\sigma_q$$
 for arbitrary σ_x and σ_y and σ_y can be correlated \longrightarrow

covariance
$$\sigma_{xy}$$

when
$$\sigma_x$$
 and σ_y are independent $\sigma_{xy} = 0 \longrightarrow \sigma_y^2 = \left(\frac{\partial y}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial y}{\partial y}\right)^2 \sigma_y^2$

$$\overline{g} = \frac{1}{N} \sum_{i=1}^{N} g_{i}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[g(\overline{x}, \overline{y}) + \frac{\partial g}{\partial x} (x_{i} - \overline{x}) + \frac{\partial g}{\partial y} (y_{i} - \overline{y}) \right]$$

$$\Sigma(x_{i} - \overline{x}) = 0 \implies \overline{g} = g(\overline{x}, \overline{y})$$

$$\overline{g}^{2} = \frac{1}{N} \sum (g_{i} - \overline{g})^{2}$$

$$= \frac{1}{N} \sum \left[\frac{\partial g}{\partial x} (x_{i} - \overline{x}) + \frac{\partial g}{\partial y} (y_{i} - \overline{y}) \right]^{2}$$

$$= \left(\frac{\partial g}{\partial x} \right)^{2} \frac{1}{N} \sum (x_{i} - \overline{x})^{2} + \left(\frac{\partial g}{\partial y} \right)^{2} \frac{1}{N} \sum (y_{i} - \overline{y})^{2}$$

$$G_{g}^{2} = \left(\frac{\partial g}{\partial x}\right)^{2} G_{x}^{2} + \left(\frac{\partial g}{\partial y}\right)^{2} G_{y}^{2} + 2 \frac{\partial g}{\partial x} \frac{\partial g}{\partial y} G_{xy}$$

$$G_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x}) \cdot (y_{i} - \overline{y})$$

+ 2 $\frac{\partial g}{\partial x} \frac{\partial g}{\partial y} \frac{1}{N} \sum_{i} (x_i - \overline{x})(y_i - \overline{y})$

$$\mathfrak{G}_{g}^{2} = \left(\frac{\partial g}{\partial x}\right)^{2} \mathfrak{G}_{x}^{2} + \left(\frac{\partial g}{\partial y}\right)^{2} \mathfrak{G}_{y}^{2}$$

Upper limit on the uncertainty

Coefficient of Linear Correlation

N pairs of values
$$(X_1, Y_1), ..., (X_N, Y_N)$$

do N pairs of (x_i, y_i) satisfy a linear relation?

$$\Gamma = \frac{\overline{\sigma}_{xy}}{\overline{\sigma}_{x} \cdot \overline{\sigma}_{y}}$$

$$\Gamma = \frac{\Sigma (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\Sigma (x_{i} - \overline{x})^{2} \Sigma (y_{i} - \overline{y})^{2}}}$$

linear correlation coefficient or correlation coefficient

Suppose (Xi, yi) all lie exactly on the line y = A + Bx

$$Y_i = A + B x_i$$

$$\overline{y} = A + B \overline{x}$$

$$y_1 - \bar{y} = B(x_i - \bar{x})$$

$$\Gamma = \frac{\beta \sum (x_i - \overline{x})^2}{\sqrt{\sum (x_i - \overline{x})^2 \cdot \beta^2 \sum (x_i - \overline{x})^2}} = \frac{\beta}{|\beta|} = \pm 1$$

suppose, there is no relationship between x and y

$$\sum (x_i - \overline{x})(y_i - \overline{y}) \rightarrow 0$$

if r is close to ± 1

when x and y are linearly correlated

if r is close to 0

when there is no relationship between x and y

x and y are uncorrelated

Quantitative Significance of r

Student i	1	2	3	4	5	6	7	8	9	10
Homework x_i	90	60	45	100	15	23	52	30	71	88
Exam y_i	90	71	65	100	45	60	75	85	100	80

calculate correlation coefficient

$$\Gamma = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

probability that N measurements of two uncorrelated variables x and y would produce $r \ge r_0$ Table C

Table 9.4. The probability $Prob_N(|r| \ge r_0)$ that N measurements of two uncorrelated variables x and y would produce a correlation coefficient with $|r| \ge r_0$. Values given are percentage probabilities, and blanks indicate values less than 0.05%.

						$r_{ m o}$					
<i>N</i>	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
3	100	94	87	81	74			51	41	29	0
6	100	85	70	56	43	31	21	12	6	1	0
10	100	78	58	40	25	14	7	2	0.5		0
20	100	67	40	20	8	2	0.5	0.1			0
50	100	49	16	3	0.4						0

correlation is "significant" if $Prob_N(|r| \ge r_0)$ is less than 5 % correlation is "highly significant" if $Prob_N(|r| \ge r_0)$ is less than 1 %

r = 0.8N = 10Prob, (Irl>To) Prob10 (111≥0.8) = 0.5 %it is very unlikely that x and y are uncorrelated it is very likely that x and y are correlated

the correlation is highly significant

Example:

Calculate the covariance and the correlation coefficient r for the following six pairs of measurements of two sides x and y of a rectangle. Would you say these data show a significant linear correlation coefficient? Highly significant?

A B C D E F
$$x = 71 72 73 75 76 77 \text{ mm}$$

$$y = 95 96 96 98 98 99 \text{ mm}$$

$$\overline{x} = 74$$

$$\overline{y} = 97$$
covariance
$$\sigma_{xy} = \frac{1}{N} \sum (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{6} \left((-3) \times (-2) + ... + 3 \times 2 \right) = \underline{3}$$
correlation coefficient
$$r = \frac{\sigma_{xy}}{\sigma_x \sigma_y} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} = \underline{0.98}$$

Table C $Prob_6(|r| \ge 0.98) \approx 0.2\%$

therefore, the correlation is both significant and highly significant

The square-root rule for a counting experiment

for events which occur at random but with a definite average rate N occurrences in a time T the standard deviation is \sqrt{N}

(number of counts in time
$$T$$
) = $N \pm \sqrt{N}$

average number of counts in a time T uncertainty

(fractional uncertainty) =
$$\frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$
 reduces with increasing N

Examples

Photoemission:

if average emission rate is 10^6 photons/s, uncertainty is $\sqrt{10^6} = 10^3$ photons/s and expected number is $10^6 \pm 10^3$ photons/s

Rain droplets on a windshield:

if average rate is 100 droplets/s, uncertainty is $\sqrt{100} = 10$ droplets/s and expected number is 100 ± 10 droplets/s

fractional uncertainty

$$\frac{1}{\sqrt{N}} = \frac{1}{1000}$$

$$\frac{1}{\sqrt{N}} = \frac{1}{10}$$

Chi Squared Test for a Distribution

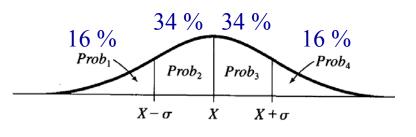
40 measured values of x (in cm)

731	772	771	681	722	688	653	757	733	742
739	780	709	676	760	748	672	687	766	645
678	748	689	810	805	778	764	753	709	675
698	770	754	830	725	710	738	638	787	712

are these measurements governed by a Gauss distribution?

$$\overline{X} = \frac{\sum X_i}{N} = 730.1 \text{ cm}$$

$$\overline{S} = \sqrt{\frac{\sum (X_i - \overline{X})^2}{N - I}} = 46.8 \text{ cm}$$



$\mathcal{O}_{\kappa} - \mathcal{E}_{\kappa}$		deviation	~ 1 '	9
$\sqrt{E_{\mathbf{K}}}$	=	expected size of its fluctuation	1	•

$$\chi^2 = \sum_{k=1}^n \frac{(O_k - E_k)^2}{E_k}$$
 chi squared

Bin number k	Observed number O_k	Expected number $E_k = NProb_k$	Difference $O_k - E_k$		
1	8	6.4	1.6		
2	10	13.6	-3.6		
3	16	13.6	2.4		
4	6	6.4	-0.4		

observed and expected distributions agree about as well as expected

 $\chi^2 \gg n$ significant disagreement between observed and expected distributions

$$O_k$$
 – observed number E_k – expected number $\sqrt{E_k}$ – fluctuations of E_k

$$\chi^2 = \frac{4}{\sum_{k=1}^{4}} \frac{(O_k - E_k)^2}{E_k}$$

$$= \frac{(1.6)^2}{6.4} + \frac{(-3.6)^2}{13.6} + \frac{(2.4)^2}{13.6} + \frac{(-0.4)^2}{6.4}$$
no reason to doubt that the measurements were governed by a Gauss distribution

= 1.80 < n by a Gauss distribution

Forms of Chi Squared

$$\chi^2 = \sum_{1}^{n} \left(\frac{\text{observed value} - \text{expected value}}{\text{standard deviation}} \right)^2$$

$$\chi^2 = \left(\frac{\chi_A - \chi}{\overline{\sigma}_A}\right)^2 + \left(\frac{\chi_B - \chi}{\overline{\sigma}_B}\right)^2$$

$$\chi^2 = \sum_{i=1}^{N} \frac{(y_i - A - Bx_i)^2}{\sigma_y^2}$$

$$\chi^2 = \sum_{\kappa=1}^{h} \frac{(O_{\kappa} - E_{\kappa})^2}{E_{\kappa}}$$

 $\chi^2 = \left(\frac{x_A - X}{\overline{b_A}}\right)^2 + \left(\frac{x_B - X}{\overline{b_A}}\right)^2$ In calculation of weighted average of $x_A \pm \overline{b_A}$ and XR + 5B

in calculation of A and B for the best straight line y=A+Bx to fit a set (X1, y1),..., (XN, YN)

In X2 test for a distribution

Degrees of Freedom and Reduced Chi Squared

a better procedure is to compare χ^2 not with the number of bins n but instead with the number of degree of freedom d

- n is the number of bins
- c is the number of parameters that had to be calculated from the data to compute the expected numbers E_k
- c is called the number of constrains

test for a Gauss
distribution
$$G_{X,S}(x) \rightarrow C=3$$

(expected average value of
$$\chi^2$$
) = $d = n-c$
 $\chi^2 = \chi^2/d$ reduced chi squared
(expected average value of χ^2) = 1

Probabilities of Chi Squared

quantitative measure of agreement between observed data and their expected distribution

(expected average value of
$$\chi^2$$
) = $d = n-c$

$$\widetilde{\chi}^2 = \chi^2/d$$
(expected average value of $\widetilde{\chi}^2$) = 1

$$\chi^{2} = 1.80$$

$$d = 4-3=1$$

$$\tilde{\chi}^{2} = 1.80$$

$$\text{Prob} (\tilde{\chi}^{2} \ge 1.80) \approx 18\%$$
Table D

							$\widetilde{\chi}_{ m o}^{\ \ 2}$						
d	0	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2	3	4	5	6
1	100	62	48	39	32	26	22	19 X	16	8	5	3	1
2	100	78	61	47	37	29	22	17	14	5	2	0.7	0.2
3	100	86	68	52	39	29	21	15	11	3	0.7	0.2	_
5	100	94	78	59	42	28	19	12	8	1	0.1	_	_
10	100	99	89	68	44	25	13	6	3	0.1	_	_	
15	100	100	94	73	45	23	10	4	1	_	_	_	_

probability of obtaining a value of $\tilde{\chi}^2$ greater or equal to $\tilde{\chi}_0^2$, assuming the measurements are governed by the expected distribution

disagreement is "significant" if $Prob_N(\widetilde{\chi}^2 \ge \widetilde{\chi}_0^2)$ is less than 5 % disagreement is "highly significant" if $Prob_N(\widetilde{\chi}^2 \ge \widetilde{\chi}_0^2)$ is less than 1 %

reject the expected distribution