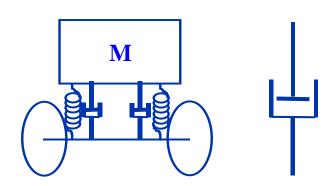
Experiment 3

Construct and test a critical damping system for a spring



- A <u>shock absorber</u> damps oscillations of springs
- If <u>overdamped</u>, recovery is very slow
- If <u>underdamped</u>, the spring will go through many oscillations before returning to equilibrium
- If the damping is just right, we call it <u>critically damped</u>. It reduces shocks and returns to equilibrium as quickly as possible

The Damped Oscillator

$$F = -mg - k(y - y_0) - bv$$
gravity spring damping
$$ma = F = -k\left(y - \left[y_0 - \frac{mg}{k}\right]\right) - bv$$

gravity changes <u>equilibrium</u> <u>position</u> y_0 but nothing else

$$\ddot{\mathbf{y}} = -\frac{k}{m}\,\mathbf{y} - \frac{b}{m}\,\dot{\mathbf{y}}$$

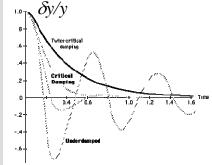
write the differential equation in *y* and solve it using an exponential function

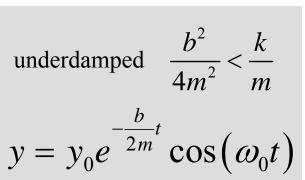
$$y = y_0 \exp\left(-\frac{b}{2m}t\right) \exp\left(\pm i\omega_0 t\right)$$

$$\omega_0 = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

damped oscillator frequency

overdamped
$$\frac{b^2}{4m^2} > \frac{k}{m}$$
$$-\left(\frac{b}{2m} - \sqrt{\frac{b^2}{4m^2} - \frac{k}{m}}\right)t$$
$$y = y_0 e^{-\left(\frac{b}{2m} - \sqrt{\frac{b^2}{4m^2} - \frac{k}{m}}\right)t}$$





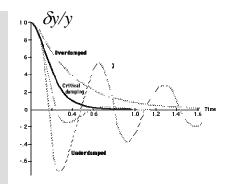
critically $\frac{b^2}{4m^2} =$

k

m

damped
$$y = y_0 e^{-\frac{b}{2m}t}$$

S. 4.



The Damped Oscillator

when the mass is displaced from equilibrium, it will return to its equilibrium position exponentially as a function of time without oscillating

large *b* would result in a stiff suspension for a car and would be equivalent to having no springs

displacement from equilibrium would result in oscillations that would continue for many cycles car would oscillate after a bump

displacement returns to zero exponentially in the shortest time the car suspension is as soft as possible without a disturbing oscillation after a bump

$$b = 2\sqrt{mk}$$

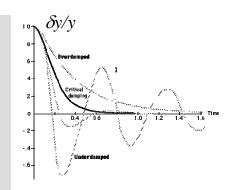
overdamped $\frac{b^2}{4m^2} > \frac{k}{m}$ $y = y_0 e^{-\left(\frac{b}{2m} - \sqrt{\frac{b^2}{4m^2} - \frac{k}{m}}\right)t}$ underdamped $\frac{b^2}{4m^2} < \frac{k}{m}$ $y = y_0 e^{-\frac{b}{2m}t} \cos\left(\omega_0 t\right)$

 b^2

k

critically damped

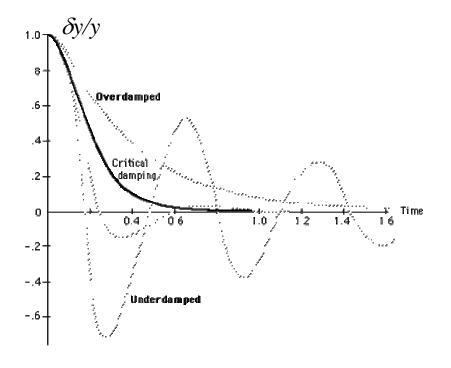
$$y = y_0 e^{-\frac{b}{2m}t}$$

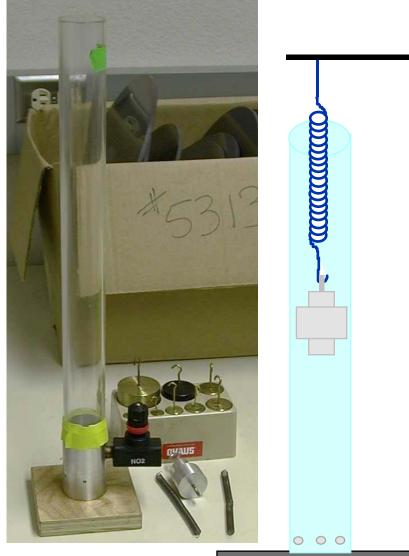


The Equipment

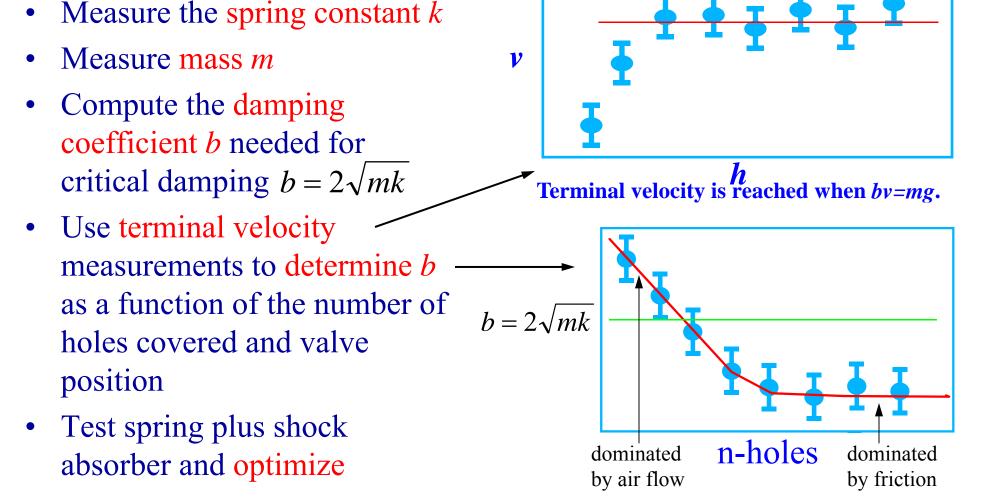
 $b = 2\sqrt{mk}$

Valve plus holes adjustment of air flow out of cylinder \rightarrow adjustment of b





Construct and Test a Critical Damping System



the valve is good for fine adjustment

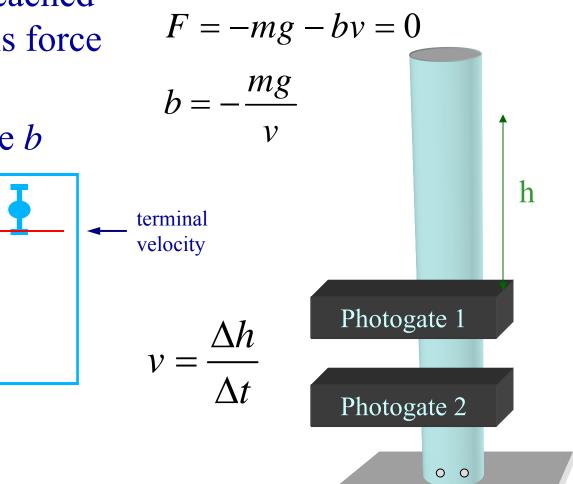
Terminal Velocity

• Terminal velocity is reached when drag force equals force of gravity

h

• We use this to measure *b*

V



Checking the Oscillator

- Good taping and a clean cylinder is crucial to good operation for terminal velocity and oscillation
- Critical damping means no real oscillation but so does overdamping
- Critical damping will have the smallest *b* with no oscillation

