Experiment 2

- Devise a simple, fast, and non-destructive method to measure the <u>variation in thickness of the shell of</u> <u>a large number of racquet balls</u> to determine if the variation in thickness is much less than 10%.
- Devise a method to measure the <u>density of the outer</u> <u>cylinder</u> without damaging the rod so that rods outside 5% tolerance will not be used in a machine.

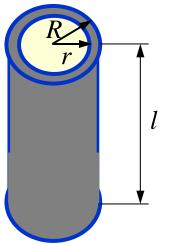
The Rods

- Measure the radii *R* and *r* and the total mass $M_{total} = M + m$
- Measure *I* by torsion pendulum
- Determine the density ρ of the outer cylinder

M is the mass of the outer cylinder *m* is the mass of the inner cylinder

$$I = \frac{1}{2}mr^{2} + \frac{1}{2}M(R^{2} + r^{2})$$
$$M = \frac{1}{R^{2}}(2I - M_{total}r^{2})$$
$$\rho = \frac{M}{\pi(R^{2} - r^{2})l}$$

find $\sigma_{\rho} \leftarrow$ propagate errors in your proposal



Measuring I by the Torsion Pendulum

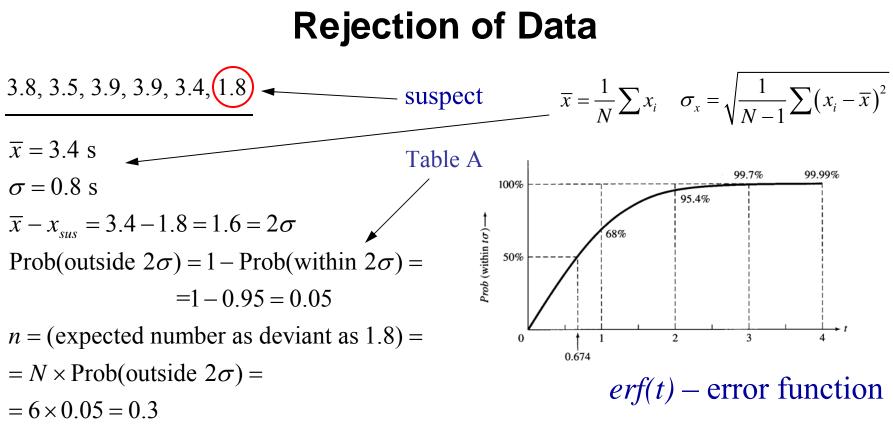
 $N = -\kappa \theta = I \ddot{\theta}$ torque equation gives diff. eq. in θ . $T = 2\pi \sqrt{\frac{I}{\kappa}}$ the period

1. calibrate the restoring torque constant *k* of the wire by measuring period T_{solid} of a solid cylinder for which moment of inertia I_{solid} can be computed $I_{solid} = \frac{1}{2} m_{solid} r_{solid}^2$

2. measure period of the torsion pendulum with the rod using the calibrated wire

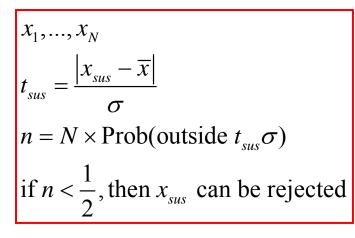
$$I = \frac{\kappa T^2}{4\pi^2}$$
$$I = \left(\frac{T}{T_{solid}}\right)^2 I_{solid}$$

minimize the wobble of the pendulum since this couples it to other modes and changes the period



if n < 0.5 the measurement is "improbable" and can be rejected according to Chauvenet's criterion

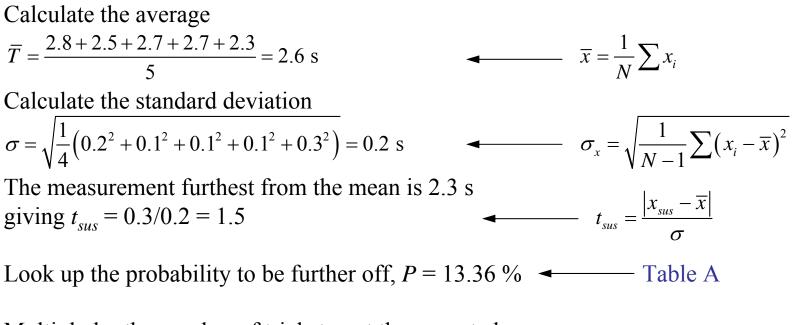
Chauvenet's criterion



Example

A student makes 5 measurements of the period of a pendulum and gets T = 2.8, 2.5, 2.7, 2.7, 2.3 s.

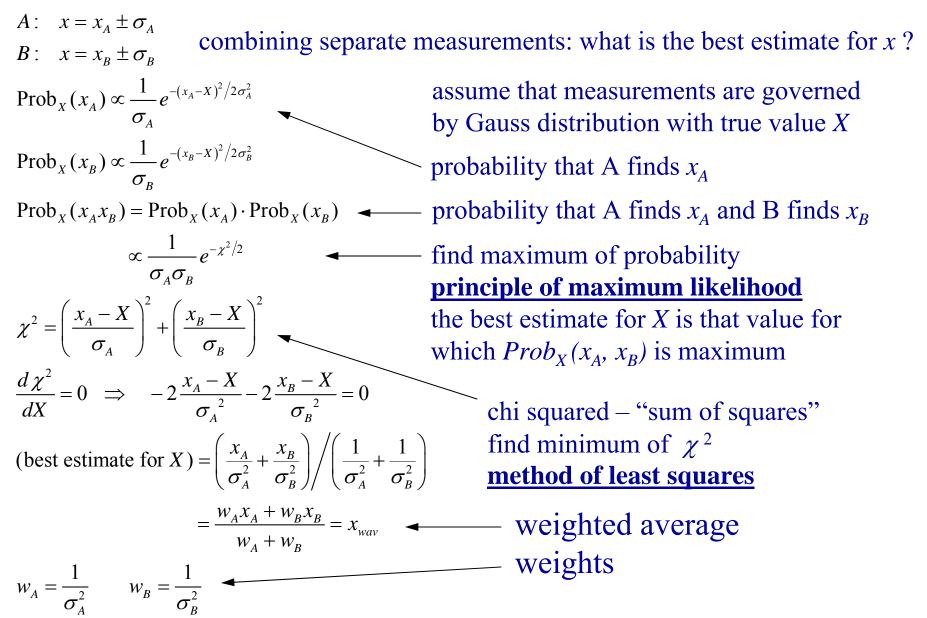
Should any of these measurements be dropped?



Multiply by the number of trials to get the expected number of events that far off, $n = 5 \times 0.1336 \approx 0.67$

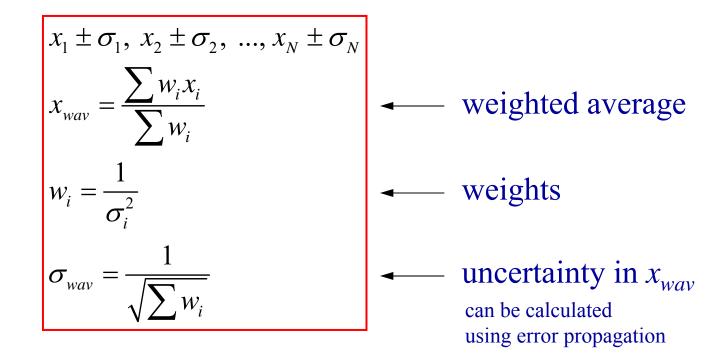
 $0.67 \ge 0.5 \rightarrow$ Do not drop this measurement (or any other)

Weighted Averages

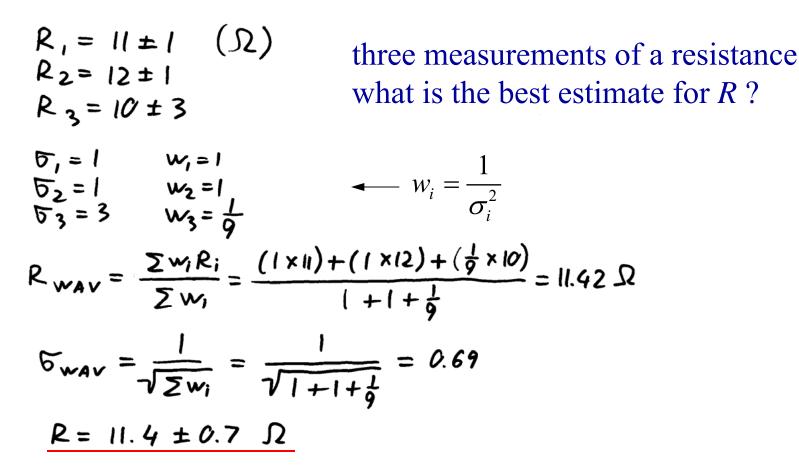


Weighted Averages

 x_1, x_2, \dots, x_N - measurements of a single quantity x with uncertainties $\sigma_1, \sigma_2, \dots, \sigma_N$

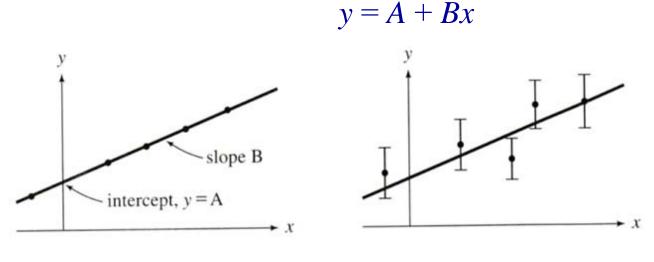


Example of Weighted Average



Least-Squares Fitting

consider two variables x and y that are connected by a linear relation

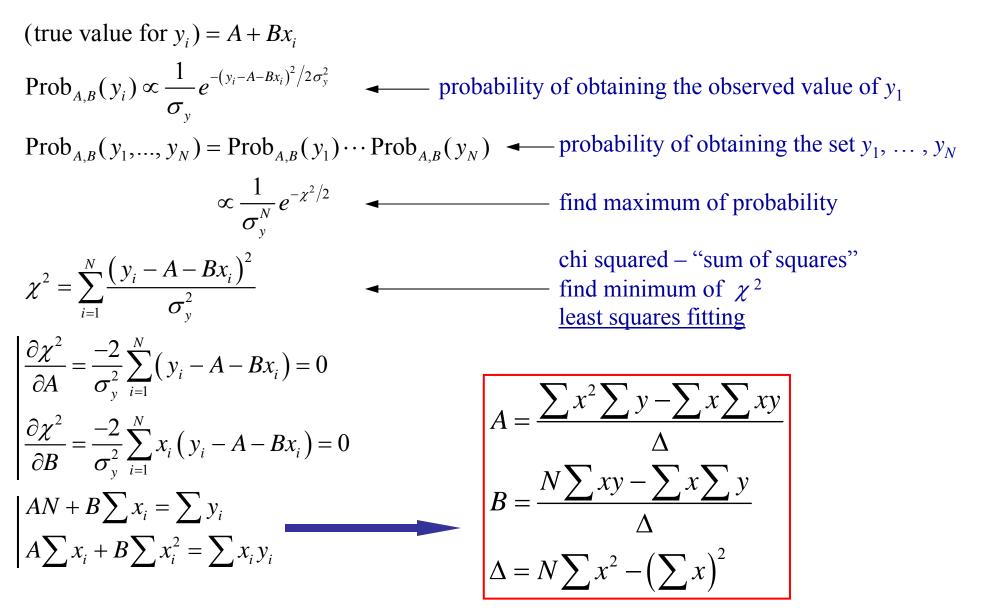


graphical method of finding the best straight line to fit a series of experimental points

$$\begin{array}{cccc} x_1, x_2, \dots, x_N \\ y_1, y_2, \dots, y_N \end{array} \longrightarrow \text{ find } A \text{ and } B \end{array}$$

analytical method of finding the best straight line to fit a series of experimental points is called <u>linear regression</u> or <u>the least-squares fit for a line</u>

Calculation of the Constants A and B



Uncertainties in y, A, and B

$\sigma_{y} = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_{i} - A - Bx_{i})^{2}}$
$\sigma_A = \sigma_y \sqrt{\frac{\sum x^2}{\Delta}}$
$\sigma_{B} = \sigma_{y} \sqrt{\frac{N}{\Delta}}$

uncertainty in the measurement of y

uncertainties in the constants A and B given by error propagation in terms of uncertainties in y_1, \ldots, y_N

Example of Calculation of the Constants A and B

