Histograms and Distributions

10 measurements:
$26,24,26,28,23,24,25,24,26,25$
different values
number of occurrences

x_{k}	23	24	25	26	27	28
n_{k}	1	3	2	3	0	1

$F_{k}=\frac{n_{k}}{N}$ fraction of measurements that gave the result x_{k}

10 measurements:
26.4, 23.9, 25.1, 24.6, 22.7, 23.8, 25.1, 23.9, 25.3, 25.4

bins for x_{k}	$22-23$	$23-24$	$24-25$	$25-26$	$26-27$
n_{k}	1	3	1	4	1

$f_{k} \Delta_{k}=\frac{n_{k}}{N}$ fraction of measurements in k-th bin has the same significance as the height F_{k} of the k-th bar in a bar histogram

Limiting Distributions

Limiting Distributions

$f(x) d x=$ fraction of measurements that fall between x and $x+d x$ $=$ probability that any measurement will give an answer between x and $x+d x$

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \text { fraction of measurements } \\
& \text { that fall between } x=a \text { and } x=b \\
& =\text { probability that any } \\
& \text { measurement will give an } \\
& \text { answer between } x=a \text { and } x=b
\end{aligned}
$$

$$
\int_{-\infty}^{+\infty} f(x) d x=1 \quad \text { normalization condition }
$$

The Gauss, or Normal Distribution

the limiting distribution for a measurement subject to many small random errors is bell shaped and centered on the true value of x
the mathematical function that describes the bell-shape curve is called the normal distribution, or Gauss function

prototype function

$$
e^{-x^{2} / 2 \sigma^{2}}
$$

σ - width parameter
X - true value of x

The Gauss, or Normal Distribution

normalize $e^{-(x-X)^{2} / 2 \sigma^{2}} \longrightarrow \int_{-\infty}^{+\infty} f(x) d x=1$
$G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}}$
standard deviation $\sigma_{x}=$ width parameter of the Gauss function σ the mean value of $x=$ true value X

The standard Deviation as 68\% Confidence Limit

$$
\underbrace{G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}}}_{\substack{G_{x o x}(x)}} \quad \begin{aligned}
\operatorname{Prob}(\text { within } \sigma) & =\int_{X-\sigma}^{X+\sigma} G_{X, \sigma}(x) d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{X-\sigma}^{X+\sigma} e^{-(x-X)^{2} / 2 \sigma^{2}} d x \\
& (x-X) / \sigma=z
\end{aligned}
$$

$\operatorname{Prob}($ within $\sigma)=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-z^{2} / 2} d z$
$\operatorname{Prob}($ within $t \sigma)=\frac{1}{\sqrt{2 \pi}} \int_{-t}^{t} e^{-z^{2} / 2} d z$

$\longleftarrow \operatorname{erf}(t)$ - error function
the probability that a measurement will fall within one standard deviation of the true answer is 68 \%
$x=x_{\text {best }} \neq \delta x \quad \delta x=\sigma$

Example:

A student measures a quantity x many times and calculates the mean as $\bar{x}=10$ and the standard deviation as $\sigma_{x}=1$. What fraction of his readings would you expect to find between 11 and 12?

$$
G_{X, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-X)^{2} / 2 \sigma^{2}} \quad t=\frac{x-X}{\sigma}
$$

$\operatorname{Prob}(X \leq x \leq X+t \sigma)=\int_{X}^{X+t \sigma} G_{X, \sigma}(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} e^{-z^{2} / 2} d z$
The probability of a measurement to be between $X+t_{1} \sigma$ and $X+t_{2} \sigma$

$$
\operatorname{Prob}\left(X+t_{1} \sigma \leq x \leq X+t_{2} \sigma\right)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{t_{2}} e^{-z^{2} / 2} d z-\frac{1}{\sqrt{2 \pi}} \int_{0}^{t_{1}} e^{-z^{2} / 2} d z
$$

$$
\begin{aligned}
& t_{1}=\frac{x_{1}-X}{\sigma}=\frac{11-10}{1}=1 \\
& t_{2}=\frac{x_{2}-X}{\sigma}=\frac{12-10}{1}=2 \\
& \operatorname{Prob}(X+\sigma \leq x \leq X+2 \sigma)= \\
& \frac{1}{\sqrt{2 \pi}} \int_{0}^{2} e^{-z^{2} / 2} d z-\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-z^{2} / 2} d z= \\
& 48 \%-34 \%=\underline{14 \%}
\end{aligned}
$$

Acceptability of a Measured Answer

(value of x) $=x_{\text {best }} \pm \sigma$
$x_{\text {exp }}$ - expected value of x, e.g. based on some theory
$x_{\text {best }}$ differs from $x_{\text {exp }} \quad \longrightarrow t=\frac{\left|x_{\text {best }}-x_{\text {exp }}\right|}{\sigma}$
by t standard deviations
$\operatorname{Prob}($ outside $t \sigma)=1-\operatorname{Prob}($ within $t \sigma)$
\downarrow

$\operatorname{erf}(t)$ - error function
$<5 \%$ - significant discrepancy, $t>1.96$
$<1 \%$ - highly significant discrepancy, $t>2.58$
boundary for unreasonable improbability
the result is beyond the boundary for unreasonable improbability
\longrightarrow the result is unacceptable

Experiment 2

- Devise a simple, fast, and non-destructive method to measure the variation in thickness of the shell of a large number of racquet balls to determine if the variation in thickness is much less than 10%.
- Devise a method to measure the density of the outer cylinder without damaging the rod so that rods outside 5\% tolerance will not be used in a machine.

Moments of Inertia

- Both problems can be solved by measuring the mass and moment of inertia of the objects.
$I=\frac{1}{2} m r^{2}+\frac{1}{2} M\left(R^{2}+r^{2}\right)$ • $\begin{aligned} & \text { For the balls, we need to measure the } \\ & \text { variation in thickness. }\end{aligned}$
- For the rods, we need absolute measurements of the density.

Measuring I by Rolling Objects

racketball
photogate timer
distance before starting timer

1. Measure M and R
2. Using photo gate timer measure the time, t, to travel distance x
$M g h=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2} \quad$ energy conservation
$v=R^{\prime} \omega$
$v=\frac{2 x}{t}$
rolling radius
for uniform acceleration
rolling radius R^{\prime}

$M g h=\frac{1}{2} v^{2}\left(M+\frac{I}{R^{\prime 2}}\right)$
$g h=\frac{2 x^{2}}{t^{2}}\left(1+\frac{I}{M R^{\prime 2}}\right)$
$\frac{I}{M R^{\prime 2}}=\left(\frac{g h t^{2}}{2 x^{2}}-1\right)$

$$
\tilde{I} \equiv \frac{I}{M R^{2}}=\frac{R^{\prime 2}}{R^{2}}\left(\frac{g h t^{2}}{2 x^{2}}-1\right)
$$

Measuring the Variation in Thickness of the Shell

- 1. Measure rolling time of one ball many times to determine the measurement error in $t \longrightarrow \sigma_{\text {measruement }}$
- 2. Measure rolling time of many
balls to determine the total spread in t
$\longrightarrow \sigma_{\text {total }}$
- 3. Calculate the spread in time due to ball manufacture, $\sigma_{\text {manufacture }}$, by subtracting the measurement error $\longrightarrow \sigma_{\text {total }}=\sigma_{\text {manufacture }} \oplus \sigma_{\text {meassuement }}$
- 4. Propagate error on t into error on I and then into error on thickness d

$$
\sigma_{x}=\sqrt{\frac{1}{N-1} \sum\left(x_{i}-\bar{x}\right)^{2}}
$$

statistical analysis
\square

$\underline{\text { variation in } t} \rightarrow \underline{\text { variation in } I} \rightarrow \underline{\text { variation in } d}$

Propagate Error from I to d

$$
\begin{array}{ll}
I=\frac{2}{5} M \frac{R^{5}-r^{5}}{R^{3}-r^{3}} \\
Z \equiv \frac{r}{R} \approx \frac{28.25-4.5 \mathrm{~mm}}{28.25 \mathrm{~mm}} \approx 0.841 \longleftarrow & \begin{array}{l}
\text { measured thickness and } \\
\text { radius for one ball }
\end{array} \\
\tilde{I}(0.841) \equiv \frac{I}{M R^{2}}=\frac{2}{5} \frac{1-z^{5}}{1-z^{3}} \approx 0.571892 \\
d=4.5 \mathrm{~mm} R=28.25 \mathrm{~mm} \\
d=R-r
\end{array} \left\lvert\, \begin{aligned}
& \tilde{I}(0.840) \equiv \frac{I}{M R^{2}}=\frac{2}{5} \frac{1-z^{5}}{1-z^{3}} \approx 0.571366 \\
& \frac{\partial z}{\partial \tilde{I}}=\frac{0.841-0.840}{0.571892-0.571366}=\frac{0.001}{0.00526}=1.901 \\
& \frac{\sigma_{d}}{d}=\frac{\sigma_{r}}{d}=\frac{R \sigma_{z}}{d}=\frac{R \tilde{I}}{d} \frac{\partial z}{\partial \tilde{I}} \frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx \frac{(28.25 \mathrm{~mm})(0.572)}{4.5 \mathrm{~mm}}(1.901) \frac{\sigma_{\tilde{I}}}{\tilde{I}}=6.826 \frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx 6.8 \frac{\sigma_{\tilde{I}}}{\tilde{I}} \\
& \frac{\sigma_{d}}{d} \approx 6.8 \frac{\sigma_{\tilde{I}}}{\tilde{I}}
\end{aligned}\right.
$$

Propagate Error from to I

from previous page $\quad \tilde{I}=\frac{I}{M R^{2}}=\frac{R^{\prime 2}}{R^{2}}\left(\frac{g h t^{2}}{2 x^{2}}-1\right) \approx 0.572$
propagate error

$$
\sigma_{\tilde{I}}=\frac{\partial \tilde{I}}{\partial t} \sigma_{t}=\frac{R^{\prime 2}}{R^{2}}\left(\frac{g h t}{x^{2}}\right) \sigma_{t}=\frac{2}{t}\left(\tilde{I}+\frac{R^{\prime 2}}{R^{2}}\right) \sigma_{t}
$$

work out fractional error numerically

$$
\frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx \frac{\frac{2}{t}\left(0.572+\frac{R^{\prime 2}}{R^{2}}\right)}{0.572} \sigma_{t} \approx 4 \frac{\sigma_{t}}{t}
$$

(plug $\tilde{I} \approx 0.572$)

$$
\begin{aligned}
\frac{\sigma_{\tilde{I}}}{\tilde{I}} & \approx 4 \frac{\sigma_{t}}{t} \\
\frac{\sigma_{d}}{d} & \approx 6.8 \frac{\sigma_{\tilde{I}}}{\tilde{I}} \approx 27 \frac{\sigma_{t}}{t}
\end{aligned}
$$

