
bins for xk 22-23   23-24   24-25   25-26   26-27
nk 1           3          1          4          1

xk 23   24   25   26   27   28
nk 1     3     2     3     0     1

Histograms and Distributions

bar histogram

bin histogram10 measurements:
26.4,  23.9,  25.1,  24.6,  22.7,  23.8,  25.1,  23.9,  25.3,  25.4
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∆ =

the area of the -th rectangle
has the same significance 
as the height  of the -th bar in a bar histogram
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Bin size k∆

fraction of measurements that gave the result xk

fraction of measurements in k-th bin

k
k

nF
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=

different values
number of occurrences

10 measurements:
26, 24, 26, 28, 23, 24, 25, 24, 26, 25



Limiting Distributions

as the number of measurements 
approaches infinity, their distribution 
approaches some definite continuous curve

this curve is called the limiting distribution, f(x)

N = 10

N = 100

N = 1,000

kf

kf

kf

xk

xk

xk



f(x) dx = fraction of measurements 
that fall between x and x+dx

= probability that any 
measurement will give an 
answer between x and x+dx

= fraction of measurements 
that fall between x=a and x=b

= probability that any 
measurement will give an 
answer between x=a and x=b

Limiting Distributions

( )
b

a
f x dx∫

( ) 1f x dx
+∝

−∝
=∫ normalization condition



the limiting distribution for a measurement 
subject to many small random errors is bell shaped
and centered on the true value of x

the mathematical function that describes the bell-shape 
curve is called the normal distribution, or Gauss function

prototype function

σ – width parameter
X – true value of x

2 22xe σ−

( )2 22x Xe σ− −

The Gauss, or Normal Distribution



The Gauss, or Normal Distribution

normalize

standard deviation σx = width parameter of the Gauss function σ
the mean value of x = true value X

after infinitely many trials
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The standard Deviation as 68% Confidence Limit

erf(t) – error function

the probability that a measurement 
will fall within one standard deviation
of the true answer is 68 %
x = xbest + δx δx = σ_

( )2 22
,
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2

x X
XG x e σ
σ σ π
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A student measures a quantity x many times and calculates the mean as x = 10 and 
the standard deviation as σx = 1. What fraction of his readings would you expect to 
find between 11 and 12? 

_

22 2/)(
, 2

1)( σ
σ πσ
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X exG −−=

2 / 2
,
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1Prob( ) ( )
2
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Example:
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z zX t x X t e dz e dzσ σ

π π
− −+ ≤ ≤ + = −∫ ∫

The probability of a measurement to be between X + t1σ and X + t2σ

Table B

x
X1

1

2
2

11 10 1
1

12 10 2
1

x Xt

x Xt

σ

σ

− −
= = =

− −
= = =

2 2
2 1

/ 2 / 2

0 0

Prob( 2 )

1 1
2 2

48% 34% 14%

z z

X x X

e dz e dz

σ σ

π π
− −

+ ≤ ≤ + =

− =

− =

∫ ∫

X + t1σ
X + t2σ



Acceptability of a Measured Answer

(value of x) = xbest ± σ

xexp - expected value of x, e.g. based on some theory

xbest differs from xexp
by t standard deviations

< 5 % - significant discrepancy, t > 1.96

< 1 % - highly significant discrepancy, t > 2.58

boundary for unreasonable improbability

erf(t) – error function

the result is beyond the boundary 
for unreasonable improbability

the result is unacceptable

exp

Prob(outside ) 1 Prob(within )

bestx x
t

t t
σ

σ σ

−
=

= −



Experiment 2Experiment 2Experiment 2

• Devise a simple, fast, and non-destructive method 
to measure the variation in thickness of the shell of 
a large number of racquet balls to determine if the 
variation in thickness is much less than 10%.

• Devise a method to measure the density of the outer 
cylinder without damaging the rod so that rods 
outside 5% tolerance will not be used in a machine.



Moments of InertiaMoments of InertiaMoments of Inertia

• Both problems can be 
solved by measuring the 
mass and moment of inertia 
of the objects.

• For the balls, we need to measure the 
variation in thickness.

• For the rods, we need absolute 
measurements of the density.

5 5

3 3

2
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R rI M
R r
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R’

rolling radius R’

racketball
photogate timer

h
x

x1

x1 distance before 
starting timer

photogate timer

Measuring I by Rolling ObjectsMeasuring Measuring II by Rolling Objectsby Rolling Objects
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1. Measure M and R
2. Using photo gate timer

measure the time, t, 
to travel distance x



σt σI σd

Measuring the Variation in Thickness of the ShellMeasuring the Variation in Thickness of the ShellMeasuring the Variation in Thickness of the Shell

• 1. Measure rolling time of one ball 
many times to determine the 
measurement error in t 

• 2. Measure rolling time of many 
balls to determine the total spread 
in t 

• 3. Calculate the spread in time due 
to ball manufacture, σmanufacture, by 
subtracting the measurement error

• 4. Propagate error on t into error on 
I and then into error on thickness d

total manufacture measruementσ σ σ= ⊕

variation in t variation in I variation in d

statistical
analysis( )21

1x ix x
N

σ = −
− ∑

measruementσ

total σ



Propagate Error from I to dPropagate Error from Propagate Error from I I toto dd
measured thickness and 
radius for one ball 
d=4.5 mm   R=28.25 mm
d=R-r

δz δI numerically

6.8d I

d I
σσ

≈ %

%

5 5

3 3

5

2 3

5
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2
5

28.25 4.5 mm 0.841
28.25 mm

2 1(0.841) 0.571892
5 1
2 1(0.840) 0.571366
5 1
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0.571892 0.571366 0.00526
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Propagate Error from t to IPropagate Error from Propagate Error from tt to to II
2 2

2 2 2

2 2

2 2 2
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1 0.572
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2 0.572
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from previous page

propagate error

work out 
fractional error 
numerically
(plug                 ) 0.572I ≈%


