General Formula for Error Propagation

$$
\begin{aligned}
& q=q(x, y, z) \\
& q_{\text {best }}=q\left(x_{\text {best }}, y_{\text {best }}, z_{\text {best }}\right)
\end{aligned}
$$

$$
\delta q=\sqrt{\left(\frac{\partial q}{\partial x} \delta x\right)^{2}+\left(\frac{\partial q}{\partial y} \delta y\right)^{2}+\left(\frac{\partial q}{\partial z} \delta z\right)^{2}}
$$

for independent random errors $\delta x, \delta y$, and δz

$$
\begin{aligned}
& \text { main formula for error propagation } \\
& \text { always use this formula }
\end{aligned}
$$

Experiment 1: Measure Density of Earth

- Calculate average density ρ and determine which elements constitute the major portion of the earth.
- Two measurements
- (a) Earth's Radius \boldsymbol{R}_{e}. (challenging measurement)
- (b) Local acceleration of gravity g. (fairly easy)
- Use Newton's constant $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
- Aim for 10% or better error on ρ.

$$
F=\frac{G M m}{r^{2}} \quad \text { Gravitational force }
$$

$$
g=\frac{F}{m}=\frac{G M}{R_{e}{ }^{2}}=\frac{G\left(\frac{4}{3} \pi R_{e}{ }^{3} \rho\right)}{R_{e}{ }^{2}}=\frac{4}{3} \pi G R_{e} \rho
$$

$$
\rho=\frac{3}{4 \pi} \frac{g}{G R_{e}}
$$

What's the Point

Its an experiment about optimizing measurement technique, error estimation, and error propagation

What Element(s) make up the Earth

- Assume most of earth's volume is one element.

Measure Earth's Radius using Δt Sunset

From right triangle:

$$
\cos (\theta)=\frac{\mathrm{R}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}+h}=\frac{1}{1+h / \mathrm{R}_{\mathrm{e}}} \approx 1-\frac{h}{\mathrm{R}_{\mathrm{e}}}
$$

For small $\boldsymbol{\theta}$:

$$
\cos (\theta) \approx 1-\frac{\theta^{2}}{2}
$$

Equating:
$\frac{\theta^{2}}{2}=\frac{h}{\mathrm{R}_{\mathrm{e}}}$
$\theta=\sqrt{\frac{2 h}{\mathrm{R}_{\mathrm{e}}}}$

Assume we are at equator

θ Increases at Earth Rotates

Earth makes (nearly) one rotation per day. Angular frequency is 2π radians per day.
ω (omega) = earth's angular frequency.
$\omega=\frac{2 \pi \frac{\text { radians }}{\text { day }}}{\left(24 \frac{\text { hours }}{\text { day }}\right)\left(60 \frac{\text { minutes }}{\text { hour }}\right)\left(60 \frac{\text { seconds }}{\text { minute }}\right)}=7.27 \times 10^{-5} \frac{\text { radians }}{\text { second }}$
$\theta=\omega t=\sqrt{\frac{2 h}{\mathrm{R}_{\mathrm{e}}}} \quad \theta$ (theta) $=$ angle earth rotates after true sunset.
$t=\frac{1}{\omega} \sqrt{\frac{2 h}{\mathrm{R}_{\mathrm{e}}}}$
Solving for t, we get the time delay of the sunset at height h (since the true sunset).

Correct for Latitude and Earth's Axis

This formula accounts for our latitude and for the angle of the earth's axis from the plane of its orbit.
$t=\frac{1}{\omega} \sqrt{\frac{2 h}{\mathrm{R}_{\mathrm{e}}\left[\cos ^{2}(\lambda) \cos ^{2}\left(\lambda_{s}\right)-\sin ^{2}(\lambda) \sin ^{2}\left(\lambda_{s}\right)\right]}} \equiv \frac{1}{\omega} \sqrt{\frac{2 C h}{\mathrm{R}_{\mathrm{e}}}}$

Measuring the Height of the Cliff

Your Height Above Sea Level on Beach

- The experimenter on the beach also views the sunset from above sea level.
- When you check the error propagation you will find that the measurement of the earth's radius is quite sensitive to the h_{2} measurement.

"The Equation" for Experiment 1a

$t=\frac{1}{\omega} \sqrt{\frac{2 C h}{\mathrm{R}_{\mathrm{e}}}} \quad$ From previous page.

$$
\Delta t=t_{1}-t_{2}=\frac{1}{\omega} \sqrt{\frac{2 C}{R_{\mathrm{e}}}}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right) \quad \begin{aligned}
& \text { Time difference between } \\
& \text { the two sunset observers. }
\end{aligned}
$$

$$
C \equiv \frac{1}{\cos ^{2}(\lambda) \cos ^{2}\left(\lambda_{s}\right)-\sin ^{2}(\lambda) \sin ^{2}\left(\lambda_{s}\right)}
$$

Season dependant factor slightly greater than 1.
use this formula for your error analysis

$$
\mathrm{R}_{\mathrm{e}}=\frac{2 C}{\omega^{2}}\left(\frac{\sqrt{h_{1}}-\sqrt{h_{2}}}{\Delta t}\right)^{2}
$$

Propagating Errors for $\boldsymbol{R}_{\boldsymbol{e}}$

$$
\begin{gathered}
\mathrm{R}_{\mathrm{e}}=\frac{2 C}{\omega^{2}}\left(\frac{\sqrt{h_{1}}-\sqrt{h_{2}}}{\Delta t}\right)^{2} \quad \text { basic formula } \\
\sigma_{R_{e}}=\frac{\partial R_{e}}{\partial \Delta t} \sigma_{\Delta t} \oplus \frac{\partial R_{e}}{\partial h_{1}} \sigma_{h_{1}} \oplus \frac{\partial R_{e}}{\partial h_{2}} \sigma_{h_{2}} \begin{array}{l}
\text { Propagate errors (use } \\
\text { shorthand for addition in } \\
\text { quadrature) }
\end{array} \\
\sigma_{R_{e}}=\frac{2 R_{e}}{\Delta t} \sigma_{\Delta t} \oplus \frac{R_{e}}{\sqrt{h_{1}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right)} \sigma_{h_{1}} \oplus \frac{R_{e}}{\sqrt{h_{2}}\left(\sqrt{h_{1}}-\sqrt{h_{2}}\right)} \sigma_{h_{2}}}
\end{gathered}
$$

Note that error blows up at $h_{1}=h_{2}$ and at $h_{2}=0$.

Cliffs West of Muir Campus

At the bottom of the asphalt road is a reasonable place to measure.

Must return there at sunset.

Do not go too near the cliffs

Do not drop or kick objects below on the beach

Wear walking shaes

nay be cold in evening

Weather plays a role.
 Completely clear days are best.

sunset time - a moment when the last point of the Sun disappears

Measuring g with a Pendulum

- Period can be measured with electronic timer over one cycle of with a stopwatch over many cycles.
- Frictional forces play a role for light weights.
- Small oscillations are good.
- Heavy weights may cause coupling to other oscillators like unstable stand.
- Short strings may cause moment of inertia to become important.
$T=2 \pi \sqrt{\frac{l}{g}} \quad$ Period of pendulum

Propagating Errors for Experiment 1

$$
\begin{aligned}
& \rho=\frac{3}{4 \pi} \frac{g}{G R_{e}} \quad \text { Formula for density. } \\
& \sigma_{\rho}=\frac{3}{4 \pi} \frac{1}{G R_{e}} \sigma_{g} \oplus \frac{-3}{4 \pi} \frac{g}{G R_{e}^{2}} \sigma_{R_{e}} \\
& \begin{array}{l}
\text { Take partial } \\
\text { derivatives and add } \\
\text { errors in quadrature }
\end{array}
\end{aligned}
$$

$$
\frac{\sigma_{\rho}}{\rho}=\frac{\sigma_{g}}{g} \oplus \frac{\sigma_{R_{e}}}{R_{e}}
$$

Statistical analysis

The mean

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{N} \quad N \text { measurements of the quantity } x \\
& x_{\text {best }}=\bar{x} \quad \text { the best estimate for } x \rightarrow \text { the average or mean } \\
& \bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{N}}{N}=\frac{\sum x_{i}}{N} \\
& \sum_{i=1}^{N} x_{i}=\sum_{i} x_{i}=\sum x_{i}=x_{1}+x_{2}+\ldots+x_{N} \quad \text { sigma notation } \\
& \text { common abbreviations }
\end{aligned}
$$

The standard deviation

$$
\begin{aligned}
& d_{i}=x_{i}-\bar{x} \quad \text { deviation of } x_{i} \text { from } \bar{x} \\
& \sigma_{x}=\sqrt{\frac{1}{N} \sum\left(x_{i}-\bar{x}\right)^{2}} \\
& \sigma_{x}=\sqrt{\frac{1}{N-1} \sum\left(x_{i}-\bar{x}\right)^{2}} \\
& \text { average uncertainty of the } \\
& \text { measurements } x_{1}, \ldots, x_{N} \\
& \text { RMS (route mean square) deviation } \\
& \text { uncertainty in any one measurement of } x \rightarrow \delta \underline{\delta x}=\sigma_{x}
\end{aligned}
$$

The standard deviation of the mean

$$
\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{N}}
$$

$$
\text { uncertainty in } \bar{x}
$$

is the standard deviation of the mean
based on the N measured values x_{1}, \ldots, x_{N} we can state our final answer for the value of x :
$($ value of $x)=x_{\text {best }} \pm \delta x$

$$
x_{\text {best }}=\bar{x} \quad \delta x=\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{N}} \quad(\text { value of } x)=\bar{x} \pm \sigma_{\bar{x}}
$$

Example

We make measurements of the period of a pendulum 3 times and find the results:
$T=2.0,2.1$, and 2.2 s .
(a) What is the mean period?
(b) What is the RMS error (the standard deviation) in the period?
(c) What is the error in the mean period (the standard deviation of the mean)?
(d) What is the best estimate for the period and the uncertainty in the best estimate.

$$
\begin{aligned}
& \bar{x}=\frac{1}{N} \sum x_{i} \left\lvert\, \sigma_{x}=\sqrt{\frac{1}{N-1} \sum\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\bar{x}}=\frac{\sigma_{x}}{\sqrt{N}}\right. \\
& \bar{T}=\frac{1}{N} \sum T_{i}=\frac{1}{3} \sum(2+2.1+2.2)=\underline{2.1 \mathrm{~s}} \\
& \sigma_{T}=\sqrt{\frac{1}{N-1} \sum\left(T_{i}-\bar{T}\right)^{2}}=\sqrt{\frac{1}{2}\left[(2-2.1)^{2}+(2.1-2.1)^{2}+(2.2-2.1)^{2}\right]}=\sqrt{\frac{1}{2}\left[0.1^{2}+0.1^{2}\right]}=\underline{0.1 \mathrm{~s}} \\
& \sigma_{\bar{T}}=\frac{\sigma_{T}}{\sqrt{N}}=\frac{0.1}{\sqrt{3}}=0.057735 \mathrm{~s} \rightarrow \underline{0.06 \mathrm{~s}} \\
& T=\bar{T} \pm \sigma_{\bar{T}}=\underline{2.10 \pm 0.06 \mathrm{~s}}
\end{aligned}
$$

Systematic errors

$$
\delta x=\sqrt{\left(\delta x_{r a n}\right)^{2}+\left(\delta x_{s y s}\right)^{2}}
$$

random component

systematic component

