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Ph 161 Black Holes        Tu - Th 9:30 AM to 10:50 AM

Professor: George M. Fuller
phone: 858-822-1214
email: gfuller@ucsd.edu
office hours: Fridays, 2:00 PM to 3:30 PM, 329 SERF

T.A.: J. J. Cherry    office hours: Monday 12:30 PM to 1:20 PM
phone: 619-985-3433
email: jcherry@physics.ucsd.edu 

Discussion Section: TBA

Course Outline:
This is a course on introductory General Relativity, b lack holes, and relativistic astrophysics. 
W e will talk about spacetime and the equivalence princip le and we will learn how to
think about, and calculate, relevant physical quantities in curved spacetime. 
Along the way we will have to develop some mathematical tools and concepts
for handling geometric ob jects like vectors. I will assume that you have taken the Ph 2 sequence 
or its equivalent and that you have had a linear algebra course (this is essential).
W e will present some classic solutions for Einstein's field equations: the Schwarzschild solution for a
spherically symmetric, static spacetime; and the Kerr family of metrics for axially symmetric,rotating spacetimes. 
Both of these are the foundation for understanding the astrophysics of b lack holes.

Grading and General Requirements:
There will be (nearly) weakly homework assignments that will be graded and will count for 60% of the final grade.
The other 40% of the grade will be based on a final paper and/or oral presentation (talk) on relevant subject matter.
 W e will discuss appropriate project subject matter in class.If you opt to write a final paper it must be at least 10 pages 
in length with appropriate references. If, instead, you opt for the oral presentation be prepared to give a (rigidly) timed 
10 minute talk to the entire class and turn in a short paper (a few pages) summarizing the talk and giving relevant references.
In either the paper or the talk, you should p lan on getting across the basic ideas in a concise and readable way. 
You will be graded on how well you have understood your top ic, how effectively you have integrated into your 
paper/presentation basic tools and concepts from class, and how effectively you can communicate your ideas. 
I am requiring this because all scientists and engineers must learn these writing and communication skills - 
this is the sort of thing that you will be doing frequently in your professional lives.
All students must attend the sessions where we have the talks. 
This session will be arranged in discussion in class.
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develop some mathematical tools and concepts for handling geometric objects like vectors. I will 

assume that you have taken the Ph 2 sequence or its equivalent and that you have had a linear 

algebra course (this is essential).  We will present some classic solutions for Einstein's field 

equations: the Schwarzschild solution for a spherically symmetric, static spacetime; and the Kerr 

family of metrics for axially symmetric,rotating spacetimes. Both of these are the foundation for 
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Homework: 60% of grade - This must be your own effort. You can talk with other students
but you absolutely must turn in your own work; no copying. I am looking to see
That you made an honest attempt to grapple with the problem. In my view, the correct
answer is not as important as clear evidence that you understood the concepts from the lecture
and reading and have made an effort to apply your understanding. 

Final Project: Paper and/or Oral Presentation: 40% of grade - 
Either of these can fall into two categories: (1) a review of an interesting topic relating to
black holes, general relativity, or cosmology, etc.; or (2) an interesting calculation of your own.
This latter category might, e.g., be a “fleshing out” of some calculation or argument that we
glossed over in class or in the book, or it might be a computer calculation of, e.g., orbits
of photons near a black hole.

Papers should be at least 10 pages with appropriate references. Oral presentations
will be 10 minutes and these will be absolutely rigidly timed, just like an APS meeting.
To pull this off, it will be best to practice it many times before hand. Oral presentations
must be accompanied by a short paper (a few pages), giving the basic point and outline of the
talk and containing all relevant and appropriate references.



Books:Books:

Text:  “GRAVITY: An Introduction to Einstein’s
            General Relativity,” James B. Hartle
            (Addison Wesley; San Francisco, 2003)

Reference: “A First Course in General Relativity,”
                   Bernard F. Schutz
                   (Cambridge University Press, Cambridge, 1990)



Reading assignment Weeks 1 & 2Reading assignment Weeks 1 & 2

Hartle: chapters 1, 2, 3, 4, 5





Black Holes
What are they
made of?

They are just curved spacetime 
-- “GRAVITY”-- 
In this case the 
fossil spacetime curvature left
over from an object (or objects)
that has (have) collapsed inside an
event horizon. 

How do we know 
they are there?

Material (gas) can fall into a BH and
in so doing be heated up to the point
where light (radiation) is emitted.
Once inside the event horizon, however,
nothing gets out!



Einstein’s General Relativity dates from 1916. It stood more or less
aloof from the rest of modern physics until the advent of x-ray
astronomy and the discovery of quasars (QSO’s - quasi stellar radio
sources) in the early 1960’s. Then it was realized that the
prodigious energy requirements of compact sources could only be
obtained from gravitational energy. This sparked a revolution in
General Relativity research. There continues to be a symbiotic
relationship between the advance of new telescope technology
and the advance of physics.

General Relativity is now a key tool of all astrophysicists and particle
physicists. 

It has a justly deserved reputation for being mathematically difficult
-but it’s basic ideas are straightforward and accessible to beginning
students.

Here we will try to steer a middle course - introduce enough math
to get at the essentials and emphasize physical reasoning.



The advent of bigger
and bigger mirrors has revolutionized
optical astronomy and physics
(NOAO)

Keck telescopes

Hale telescope
(Palomar)



Hubble Space Telescope (HST)           NASAHubble Space Telescope (HST)           NASA



Chandra X-Ray Observatory

Spacecraft currently in orbit - NASA/CXC/SAO



Chandra X-ray Observatory

CXC

Schematic of Grazing Incidence, X-ray Mirrors

NASA/CXC/SAO



XMM - NEWTON Satellite (X-Ray Observatory)



XMM-Newton
X-ray sources in the
Andromeda galaxy

(image courtesy of W. Pietsch
MPE Garching & ESA)



Stellar Mass Black Holes

These objects form from the collapse of massive stars
(supernova explosions)
and/or from accretion of material on a neutron star
subsequent to a collapse event.



Artist’s conception of gas accreting onto 
black hole from companion star
(http://www.spaceref.com/news).



companion star feeding gas into BH accretion disk
 (science.nasa.gov)

x-rays

x-rays



Side view of companion star feeding gas into the accretion disk
around a rotating (Kerr) black hole. (GSFC, NASA)



Intermediate- and Super-massive Black Holes Intermediate- and Super-massive Black Holes 

intermediate mass

These may form from the collapse of very massive or supermassive stars
(pair instability and GR instability supernovae, respectively).

supermassive

There seems to be a supermassive black hole at the center of nearly every galaxy.
Our galaxy has a hole with mass ~ 106 solar masses; 
andromeda has one with ~ 3 x 107 solar masses.

QSO’s (quasars) and Active Galactic Nuclei (AGN) have monster central black holes.
Accretion of gas on these gives rise to prodigious optical, radio, and x-ray 
and high energy particle emission. 



size and composition of a typical galaxy

20 kpc

100 kpc

dark matter halo

chandra.as.utexas.edu/ ~kormendy/n4216-halo.gif 



artist’s conception of the accreting black hole in the MCG-6-30-15 galaxy
(NASA; ESA http://www.esrin.esa.it)







The QSO paradigm - 
accretion disk and polar jets of relativistic particles
around a rotating supermassive black hole.

http://www.seasky.or/cosmic/sky7a09.html



http://cossc.gsfc.nasa.gov/epo/brochures/new_win/nw12.html

accretion disk & associated emission from supermassive BH



Optical image from the 
Hubble Space Telescope (HST)
of the “Hubble Deep Field”
region of the sky 

X-Ray image of the same patch of sky
by the Chandra X-Ray Observatory
(“Chandra Deep Field”)



Identifications of optical HST sources and Chandra x-ray sources - these are accreting supermassive BH’s.

NASA/CXC/SAO



Chandra x-ray image of a region of the sky with little absorption called
the Lockman Hole - it reveals many extra-galactic  supermassive black holes.
(http://www.science.nasa.gov/headlines/images/blackhole)







accretion disk
130 light years

~ 109 solar mass BH 



The Greats of Space & Time & GravitationThe Greats of Space & Time & Gravitation

Newton Einstein



Preliminaries

• Cartesian geometry

• Newtonian Mechanics

• executive summary of the difference
  of the Newtonian and Einsteinian
  views of time, space, and gravitation.
 
• spacetime



Cartesian Coordinates in a flat 2-D space 
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point number 2: (x2, y2) 
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The points in space are real, physical objects.
The coordinates that label them depend on a particular set
of coordinate axes, the coordinate system.

The relation between the numbers (coordinates)
that give the address of point 1
in the two coordinate systems in this case is:



The generalization of these considerations to
3 dimensions is straightforward and obvious.
The distance (and distance-squared) between
two points is the same when computed in ANY
coordinate system.

Distance (and distance-squared) is an invariant,
meaning it is the same in all coordinate systems. 

This 3-D Cartesian (Euclidean) space is well known
to you. It serves as the frame work for all of 
Newtonian Mechanics. 



Newtonian Dynamics

View motion and acceleration of particles/objects
in inertial coordinate systems - 
these are, e.g., Cartesian coordinate systems that
move at constant velocity with respect to each other.
(They are un-accelerated coordinate systems.) 

This way, all coordinate systems (inertial frames)
agree on the accelerations of (and so the forces
on) particles/objects.

v
y

x

y'
x'

“inertial mass” = m

Time t is universal here!!!



Given some inertial frame (coordinate system), we can
construct another by either rotating the axes (three independent
angles in three dimensions) and/or by “boosting”
to another set of axes that are moving with respect to the first
with some (constant) velocity.  See example of a boost on
the previous slide, or this one . . .

Galilean Relativity

y

x

Frame O Frame O’ 

x'

y'

V

Galilean boost
along x-axis of O
 
x’ = x - V t 
y’ = y
z’ = z
 



Newtonian Gravitation
Space is filled with inertial coordinate systems,
each of which covers all of space (the axes can be
extended to infinity in any direction - they are global),
and each of which has the SAME time parameter t.

There are gravitational forces between mass points.
From Newton’s F=ma law we can compute the
accelerations of particles if we know their
gravitational and inertial masses and we use the
Newtonian gravitational force law:

e.g., accleration of particle i is

The inertial and gravitational masses need not be equal, only proportional.



Newtonian gravitation is linear so that gravitational forces just add
up linearly. If the mass density throughout space 
is just given by ρ then the gravitational potential energy at some
point r is given by . . . 

. . . and the gravitational force on a point mass with mass m at 
this location is . . .



Einsteinian Gravitation
There are only local inertial coordinate systems
(only valid and inertial in a small patch of space & time)
in a four-dimensional spacetime in which time
is not universal, but rather one of the coordinates.

There are NO gravitational forces. Particles move on
locally straight lines, as determined by the local inertial
coordinate systems.

Inertial and gravitational masses are identical - the
Equivalence Principle.

The orientation and relationship of the neighboring
inertial coordinate systems (“curvature”) is determined
by the local content of mass-energy through the
Einstein Field Equation - this is nonlinear. 



Einstein’s Relativity
The speed of light is the same when measured in 
ANY coordinate system.

(Speed of a light beam as measured by any observer,
no matter what his state of motion, is always the same
value.)

Einstein was led to this by experiment: Maxwell’s equations
for electricity and magnetism; the Michelson-Morely
experiment; the Eotvos experiment. 

Special Relativity (1905) 
global inertial coordinate systems; no gravitation

General Relativity (1916) 
local inertial coordinate systems; equivalence principle



Dimensions
We know of four dimensions: 
3 spacelike dimensions (look around you)
1 timelike dimension (look at your watch)

So, we live in a (3 + 1 =) 4 dimensional spacetime.

But time and length do not have the same 
“units,” do they? We measure, for example, 
length in meters and time in seconds.

Let’s agree to measure time and length with the same units. 



We shall multiply time t by the speed of light in vacuum, c,
a universal constant.

But we are going to be a little tricky with this.
Whenever you see t, we will really mean c t . 

Now, the slang used by physicists for this convention
is to say that “we have set c = 1”.

Notice that with this convention all speeds and the
magnitudes of all velocities are dimensionless.



With this convention, if something is moving across
a coordinate system with speed v = 1 it is moving at
the speed of light, at v = 0.5 it is moving at half the speed
of light, at v = 0.1 it is moving at a tenth light speed, etc.



Einstein’s theory of RELATIVITYRELATIVITY is the study of the
geometry of this 4-dimensional space (spacetime).

Einstein’s theory of relativity does NOT say that everything
is relative! Far from it. In fact, a better name for it would
be Einstein’s theory of invariants, quantities that are the
same for all “observers,” that is, coordinate systems.

“observer” = coordinate system

the invariants = “geometric objects,” 
                             e.g., points (events),
                              arrows (vectors),
                              slices/contours (nested surfaces),
                              etc.
                             



The events (points) in spacetime are real, physical objects.
The coordinates that label them depend on a particular set
of coordinate axes, the coordinate system.

In thinking about spacetime, I have found that it is best
to think about all events, those that happened in the “past,”
as well as those that are to happen in the “future,” as the
same as those happening “now.” They are all just as real, just
as physical. All together they form the fabric of spacetime.

For most of us this is an unnatural, sometimes even disturbing
viewpoint.  So, all those bad things you’d like to forget are not
gone! They are just as real as this lecture right “now,” and
just as real as the good things that haven’t happened yet!



Given some inertial frame (Minkowski coordinate system), 
we can construct another by either rotating the spacelike axes 
and/or by “boosting” to another Minkowski coordinate system
moving with respect to the first with some velocity.

But now the coordinates in these systems must be related in
a way that keeps the speed of light constant!  

Einsteinian Relativity

y

x

Frame O Frame O 

x

y

V

Lorentz boost
along x-axis of O

Lorentz factor

! 
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Lorentz Factor

V

γ



Spacetime Diagrams
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coordinate system   (t, x, y, z)

event number 1: (t1, x1, y1, z1)

event number 2: (t2, x2, y2, z2)

invariant spacetime interval between these events

Δs2=-(t2-t1)2+(x2-x1)2 +(y2-y1)2 +(z2-z1)2
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The relation between the numbers (coordinates)
that give the address of, e.g., point 1
in the two coordinate systems in this case is:

All Greek indices take all four spacetime values, 0, 1, 2, 3;
all roman indices take only the spacelike values, 1, 2, 3.
If an index is repeated (one “up” and one “down” or
vice versa) then it is summed on - 
the Einstein summation convention.



In the case of global inertial coordinate systems, where we
can extend the 4 axes to infinity in each “direction,”
the coordinate transformation has constant values everywhere
in spacetime and is called a Lorentz transformation.

It must be constructed so that the speed of light is the same
in any two coordinate systems.

We can show that this transformation will also leave the
spacetime interval invariant - the same in any two
coordinate systems.



. . . for our example of a boost along x direction of O 
the Lorentz transformation elements are . . .

a matrix representation of this coordinate transformation is



Suppose we boost along O ‘s y-axis instead of x ?
The relationship between the coordinates in this case is . . .

. . . boost along z . . .



Spacetime Diagrams
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event number 1: (t1, x1, y1, z1)

event number 2: (t2, x2, y2, z2)

invariant spacetime interval between these events

Δs2=-(t2-t1)2+(x2-x1)2 +(y2-y1)2 +(z2-z1)2

    

! 

(t ,  x ,  y ,  z )

  

! 

t 

  

! 

x 

    

! 

(t 1 ,  x 1 ,  y 1 ,  z 1 )

    

! 

(t 2 ,  x 2 ,  y 2 ,  z 2 )

    

! 

= - (t 2 " t 1)2
+ (x 2 " x 1)2

+ (y 2 " y 1)2
+ (z 2 " z 1)2



How did we plot the axes of coordinate system (observer) O ?

First note that the origin of O ‘s coordinate system
moves along O ‘s x-axis with speed V so its coordinates
are . . .  

This is O ‘s time axis. 

Getting O ‘s x-axis is a little trickier. We can get it 
by noting that the speed of light is the same in both . . .
 



Note that light beams       are always straight lines
with 450 slope in all spacetime diagrams - at least
for the way we have set them up with c=1. 

O 
t

x

-a

a
a

x-axis : those events which O measures
to be simultaneous to t=x=0.

Light beam moves out and bounces
off mirror at x = a. 

. . . as “seen” in O . . . 
t

x

t
a

-a



t

x

t

x

ϕ

ϕ

. . . boost by V along positive x-axis of O . . .



t

x

t

x

ϕ

ϕ

. . . boost by -V along x-axis of O . . .

Suppose now you sit in O and plot
the axes of O . . . 

. . . this is just the 
inverse Lorentz transformation . . .



A matrix representation of this inverse Lorentz transformation
from O to O is . . .  



But from before we had that . . . 

boost outboost back

=



Note that coordinate differentials transform under
Lorentz transformations just as the coordinates
themselves do . . 

This goes for infinitesimal coordinate intervals as well . . .



Failure of Simultaneity
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coordinate system   (t, x, y, z)

event number 1: (t1, x1, y1, z1)

event number 2: (t2, x2, y2, z2)

These events are simultaneous in O but not in O 
t2-t1 > 0 but t2-t1 = 0
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Spacetime Diagrams
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Spacetime Interval

. . . always the same in any coordinate system . . .



The spacetime interval between two events is . . . 

This is weird: the spacetime interval, the invariant quantity that replaces
“distance” in 2-D and 3-D space, can be positive, zero, and even negative! 



t

x

future light cone

past light cone

add light lines through
an event . . . 



www.theory.caltech.edu/people/patricia/lcone2.html

Light cones - example



Spacetime Spacetime IntervalInterval

another way to write it . . . 

a matrix representation of the Minkowski metric is . . . 

. . . for an infinitesimal spacetime interval . . .  



The components of the Minkowski metric are . . . 



The invariance of the spacetime interval means that the 
Minkowski metric has the same components in all Minkowski
coordinate systems . And this means . . . 



Proper TimeProper Time

For timelike spacetime intervals we can define the lapse of 
Proper Time as . . . 

If you are in the rest frame of a clock, the lapse of proper time,
an invariant interval between the “ticks” (events) of the clock,
is the same as the lapse of coordinate time. Why?



We will define a vector (sometimes called a 4-vector) 
to be a geometric object that in a given coordinate
system can be represented by four numbers - the components
in that coordinate system. We will define these components
to transform under Lorentz transformations just the same
way coordinate intervals transform.



A vector like A is a real, physical, geometric object
which exists independently of any coordinate system.

We can, however, choose a coordinate system and project
out components. Different coordinate systems will in general
have different sets of components for this vector
 - but the vector remains the same.

The rule we have for the way the components transform
ensures that the magnitude of a vector is frame invariant -
because the spacetime interval is invariant. 



The vector A is . . . 



Consider a vector A and a vector B. We can define their inner
product in terms of their components in some coordinate
system as . . .

This is frame invariant, so, e.g., 

Why? Consider the vector C = A + B. Clearly, C·C is invariant 
and so A·B = B·A is as well!



Two vectors are orthogonal 
if their inner product vanishes.

By this definition a null vector 
is orthogonal to itself!



t

x

Basis Vectors . . .
for a coordinate system O . . .
“unit” vectors that point along
axes 

Components in this 
coordinate system

These are vectors and the
set of four of them define
the coordinate system O 

These are vectors and they 
have components



Note the utility of these basis vectors . . .
Any vector can be written as a linear combination of the
basis vectors . . .vectors are geometric objects 

We conclude that the basis vectors transform under a 
Lorentz Transformation this way . . .

This just writes one vector as a linear combination
of the O coordinate system’s basis vectors.



t

x

Consider the world line swept out by a moving 
particle as measured in (viewed by) frame O

O 

The four velocity is defined as the
tangent vector to the world at this event:



Note the magnitude of the four velocity is always -1



So, we can write the components of the four velocity in
frame O as



t

x

Suppose now we boost into the instantaneous 
rest frame O of the particle at this event.

O 

The four velocity is simply the timelike basis vector in
the instantaneous rest frame of the particle!



Note that physical particles always travel on timelike world lines.

Note, however, that photons have no four velocity -
it is not defined.

The character (timelike, spacelike, or null) of a curve at any
event is the same as the tangent vector at that event.



The energy-momentum four-vector for a particle
                 (the momentum vector)

(here m is a scalar quantity called the rest mass)

Note that in the instantaneous rest frame of the particle, E = m = mc2,
and px = py = pz = 0.



“energy” is just a component - different observers will not
agree on its value.

What about dimensions (“units”) here? Since we have 
set c = 1, energy and momentum have the same units -
the same units as rest mass - which we will take to be
the same as ENERGY.



If a particle has 4-momentum p, an observer with 4-velocity uobs 
will measure its energy to be . . .

Why? Because the observer’s 4-velocity is his timelike
basis vector, and in his rest frame it has components
(1, 0, 0, 0). The inner product of this vector with
the particle’s 4-momentum will pick-off the timelike
component - the energy.

Remember that the inner product is frame invariant -
it does not matter which frame you evaluate in, so choose
the frame where it is easiest!



Example: suppose we view the world from some
coordinate system and in that system we measure
a particle with mass m to be at rest. 

We also measure the origin of another observer’s
coordinate system to be moving with 3-velocity W along x .

What energy does this second observer measure the 
particle to have? components of momentum vector

in first observer’s frame

components of 4-velocity of 2nd observer
in first observer’s frame

energy as measured by 2nd observer 






