
Black Holes (Ph 161)

An introduction to General Relativity. 

Lecture II



Read Chapters 6 and 7 in Hartle’s book. 



Read Chapter 8 of Hartle



A quick and dirty tour of all of the whole universe

- the large scale structure/evolution of spacetime!



Hubble (HST)
Ultra Deep Field

Some of the first
galaxies to form.





George Gamow

George LeMaitre

A. Friedmann

Albert Einstein



Homogeneity and isotropy of the universe:
implies that total energy inside a co-moving spherical surface is constant with time.

total energy = (kinetic energy of expansion) + (gravitational potential energy)
mass-energy density = ρ
test mass = m
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total energy > 0   expand forever        k = -1

total energy = 0 for ρ = ρcrit                 k = 0

total energy < 0  re-collapse                k = +1 

Ω = ρ/ρcrit
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The key point in our argument was symmetry:
specifically, a homogeneous and isotropic distribution
of mass and energy!

What evidence is there that this is true?

Look around you. This is manifestly NOT true on
small scales. The Cosmic Microwave Background
Radiation (CMB) represents our best evidence that
matter is smoothly and homogeneously distributed
on the largest scales.



The COBE satellite - the microwave background radiation

Blackbody radiation



Friedman-LeMaitre-Robertson-Walker (FLRW) coordinates

defined through this metric . . .



k = -1 k = 0 k = +1



How far does a photon travel in the age of the universe?

Consider a radially-directed photon (                              ) 

photons travel on 
null world lines so ds2=0 

(causal horizon)



=

Causal (Particle) Horizon
radiation dominated

matter dominated

vacuum energy dominated

In every case the physical (proper) distance a light signal travels goes
to infinity as the value of the timelike coordinate t does.

Note, however, that for the vacuum dominated case there is a finite
limiting value for the FLRW radial coordinate as t goes to infinity . . .



Type Ia supernovae
(thermonuclear explosions)
serve as “standard candles,”
meaning we claim to know
their absolute brightness.

From the measured flux of photons
we can get their distance and from
their spectra we can get their redshift.

Putting these together we can get
distance as a function of
redshift and, hence,
scale factor as a function of time 
for redshifts out to
Z ~ 1.

LBL supernova cosmology website



LBL supernova cosmology website



LBL supernova cosmology website



WMAP cosmic microwave background satellite

Fluctuations in CMB temperature give
Insight into the composition, size, and age
of the universe and the large scale character
of spacetime.

Age = 13.7 Gyr
Spacetime = “flat” (meaning k=0)
Composition = 23% unknown nonrelativistic
                          matter, 73% unknown
                          vacuum energy (dark energy),
                          4% ordinary baryons.



observational constraints
on the content of
of nonrelativistic matter
and vacuum energy
(dark energy) in the 
universe 
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(fraction of critical density contributed by nonrelativistic matter) 



(vacuum energy)



We live in a k = 0, critically closed universe.



photon decoupling T~ 0. 2 eV

vacuum+matter dominated
at current epoch



The Equivalence Principle

• Eotvos experiments

• meaning for freely falling bodies

• geometric implications
 
• geodesics



The EÖTVÖS Experiment

torsion balance

see www.npl.washington.edu/eotwash

Magnitude of torque on fiber:



EotWash lab’s results: sensitivity for long range forces
                                        is at about 1 part in 1013

www.npl.washington.edu/eotwash/



OK, what does this mean?OK, what does this mean?

Everything falls at the same rate!

Apollo 15 astronaut
David R. Scott drops a hammer
and a feather . . . Guess what happens?

www.hq.nasa.gov/ . . ./History/SP-4214/cover.html



One begins to get a creepy feeling that the acceleration
produced by “gravity” has nothing to do with what the bodies
in question are made out of, but rather is a property of space
(spacetime) itself!



cse.ssl.berkeley.edu/bmendez/ay10/2002/notes/pics

equivalence of inertial and gravitational mass:



elevators in free fall . . .elevators in free fall . . .  & the E. P.& the E. P.

1 g = 9.8 m s-2 

If we make the elevator small
enough, it looks to us as if
THERE IS NO GRAVITY !!!

Cannot tell the difference between
an elevator in free fall and the
absence of gravitation. 

Someone cuts your elevator’s cable and you release the two balls
that you have in your hands . . .  What happens?



Statement of the 
Equivalence Principle:

In a sufficiently small region
of space & time we can find
a freely falling (locally Minkowski)
coordinate system in which the
effects of gravitation are absent
- the laws of physics are
the same as they are in a
Minkowski coordinate system
with no gravitation.  

Statement of the fundamental theorem
of differential geometry for 2-D surfaces:

In a sufficiently small region on any 2-D
surface, the geometry is locally flat and
Cartesian. (We can pass a tangent plane
through any point on the surface. In a
sufficiently small region around where 
this tangent plane touches the surface,
the geometry will be flat, like a 
Cartesian plane.)  

Gravitation as Geometry



Coordinate TransformationsCoordinate Transformations
Follows from the chain rule: view coordinates in one system
                                              as functions of the coordinates
                                              in the other frame.

e.g., consider these four functions:

chain rule gives:

Coordinate transformation is these 16 functions:



In locally inertial (Minkowski) coordinates                  the particle is unaccelerated, and 
moving on a straight line

multiply both sides by and sum:



Geodesic EquationGeodesic Equation

So in this coordinate system ( x ) it looks as if the particle 
experiences a “gravitational force” and is accelerated.

Note that another way to write this equation is



Connection CoefficientsConnection Coefficients
    ((Christoffel Christoffel symbols)symbols)

These are obviously related to how the locally Minkowski
coordinates differ from our lab coordinates x



Now, in considering these two coordinate systems, the locally
Minkowski coordinates         , and the “lab” coordinates          ,
we will demand that the spacetime interval is always the same:



Length, Area, and Volume and the MetricLength, Area, and Volume and the Metric

Watch out! Actual physical (or proper) lengths, areas, and volumes
are not the same as coordinate values of the same quantity.

It must be kept in mind that the spacetime interval is preserved under
coordinate transformations. Think about the invariant interval
corresponding to an infinitesimal coordinate increment:

More Examples . . .



The components of the metric tensor in freely falling,
locally Minkowski coordinates         are

The components of the metric tensor in the “lab”
coordinate system            are 



The Metric Tensor and The Metric Tensor and ““GeneralGeneral”” Coordinates Coordinates

. . . this is how the “components” of the metric transform
under a coordinate transformation, where the transformation 
matrix elements are (for a so-called “coordinate basis”) 

for the two different coordinate systems             and  

TheThe  Equivalence Principle says thatEquivalence Principle says that  at any event in at any event in spacetimespacetime
it is always possible to find a transformation to locallyit is always possible to find a transformation to locally
Minkowski Minkowski coordinates.coordinates. 



The general metric tensor field is 

It is symmetric: 

Therefore, there are 10 independent functions 
at any event (point) in spacetime.

Why?

The metric tensor defines a coordinate system
and vice versa through the line element



It will turn out that the It will turn out that the Christoffel Christoffel symbols can besymbols can be
written in terms of the inverse metric and thewritten in terms of the inverse metric and the
partial derivatives of the metric as . . .partial derivatives of the metric as . . .

where the inverse metric is so-named because . . .

We will not use this expression for the Christoffel symbols
very often . . . usually there are easier ways to get them!



General VectorsGeneral Vectors

. . . where the metric tensor components are the inner products
of the general, curvilinear (coordinate) basis vectors . . .



Examples in 3-D: flat Cartesian coordinates
                            and spherical polar coordinates.



“flat space” means Minkowski coordinates (t, x, y, z) 

the metric for which is just 

What about coordinates (t, r, θ, ϕ) ?

BOTH COORDINATE SYSTEMSBOTH COORDINATE SYSTEMS
DESCRIBE THE DESCRIBE THE SAME GEOMETRYSAME GEOMETRY



How do we tell the difference betweenHow do we tell the difference between
between coordinates that implybetween coordinates that imply
curvaturecurvature (gravitational effects) and (gravitational effects) and
just plain oldjust plain old  flat space flat space masqueradingmasquerading
itself with itself with ““curvilinear coordinatescurvilinear coordinates””??

The answer can be found in the Equivalence Principle which
says that physics is invariant under coordinate transformations,
all coordinate transformations. We are free to choose a coordinate
transformation any way we want:



The E.P. gives us enough freedom to choose coordinates at 
any event (point) to transform the metric components
to be those of the Minkowski metric and the first derivatives
of the metric to be zero, thereby making the Christoffel
symbols zero as well.  

Expand our “lab” coordinates in a Taylor series about point         in the desired 
coordinates (which will of course be the locally inertial, Minkowski coordinates) . . .

Similarly expand the metric functions and use



We would like to transform the metric to the flat space, Minkowski
metric and we would like to get rid of as many derivatives of the
metric functions as possible . . . What can we do with our
freedom to choose the coordinate transformation?

20 second derivatives of the metric which cannot in general be20 second derivatives of the metric which cannot in general be
set to zero withset to zero with  the coordinate freedomthe coordinate freedom  given by the E. P. given by the E. P. 



It turns out that in a weak gravitational field the time-time
component of the metric is related to the Newtonian gravitational
potential by . . .

Where the Newtonian gravitational potential is

dimensionless !
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A convenient coordinate system forA convenient coordinate system for  
weakweak &  & staticstatic (no time dependence) gravitational fields (no time dependence) gravitational fields
is given by the following coordinate system/metricis given by the following coordinate system/metric:

This would be a decent description of the spacetime
geometry and gravitational effects around the earth,
the sun, and white dwarf stars, but not near the surfaces
of neutron stars.

We will explore this metric with variational principles later. 










