Black Holes (Ph 161)

An introduction to General Relativity.

Lecture I




Ph 161 Black Holes
Homework Assignment 2
Due Tuesday, February 7. 2006

This should be your own work: do not copy problem solutions.

(1.) Write a few paragraphs discussing the Equivalence Principle and its relationship to
geometry. Specifically, describe the experiments which test the relative acceleration of
different bodies in a gravitational field (E6tvés experiments) and discuss what it is they
measure, how they measure it, and their current precision. Then explain the geometric
significance of the idea that “everything falls (accelerates)at the same rate in a gravitational
field,” and the analogy to the geometry on a 2-dimensional curved surface.

(2.) Give an argument as to why there can be no global inertial, Minkowski coordinate
systems in the presence of a gravitational field.

(3.) With a coordinate transformation from locally inertial (locally Minkowski) coordinates
{£°} to a laboratory coordinate system {z*} ( i.c., one at rest on the surface of the earth)

derive the geodesic equations. (This is indeed exactly what we did in class!)

(4.) Hartle Chapter 7: problem 7.

Read Chapters 6 and 7 in Hartle’s book.



Ph 161 Black Holes
Homework Assignment 3
Due Tuesday, February 14, 2006

This should be your own work: do not copy problem solutions.

(1.) Hartle Chapter 7: problem 9. This is what we discussed in class on Tuesday. Explicitly
write out the Taylor expansion involved and show your arguments for the number of degrees
of freedom in both the coordinate transformation and the metric. Comment on how the
second derivatives of the metric which cannot be set to zero in general are related to tidal
forces.

(2.) Hartle Chapter 8: problem 2.

(3.) Hartle Chapter 8: problem 3.

Read Chapter 8 of Hartle



A quick and dirty tour of all of the whole universe

- the large scale structure/evolution of spacetime!



Hubble (HST)
Ultra Deep Field

Some of the first
galaxies to form.
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The key point in our argument was symmeitry:

specifically, a homogeneous and isotropic distribution
of mass and energy!

What evidence is there that this is true?

Look around you. This is manifestly NOT true on
small scales. The Cosmic Microwave Background
Radiation (CMB) represents our best evidence that
matter is smoothly and homogeneously distributed
on the largest scales.



The COBE satellite - the microwave background radiation
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Friedman-LeMaitre-Robertson-Walker (FLRW) coordinates
(t,7,0,0)

defined through this metric . . .

dr?

ds® = —dt* + a* (t)

11— kr?

- 1r2d0* + % sin® 0 dp?

scale factor a (%)

curvature parameter k =1, 0, —1







How far does a photon travel in the age of the universe?
(causal horizon)

T2
ds® = —dt* + a* (t) [1 —Tkr2 - r2d6? + r? sin® 0 dgpQ]
Consider a radially-directed photon ( df = dp =0 )
di (1) —/THrdr—a(t)/rH ar
H — . grr — . \/1 — 12

photons travel on ‘ dt _ dr
null world lines so ds2=0 a(t) 1—kr2

t dt/
> dH(t):a,(t)/O T




Causal (Particle) Horizon
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In every case the physical (proper) distance a light signal travels goes
to infinity as the value of the timelike coordinate ¢ does.

Note, however, that for the vacuum dominated case there is a finite
limiting value for the FLRW radial coordinate as ¢ goes to infinity . . .
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Type la supernovae
(thermonuclear explosions)
serve as “standard candles,”
meaning we claim to know
their absolute brightness.

From the measured flux of photons
we can get their distance and from
their spectra we can get their redshift.

Putting these together we can get
distance as a function of

redshift and, hence,

scale factor as a function of time
for redshifts out to

Z~1.

LBL supernova cosmology website

Supernova 1998ba
Supernova Cosmology Project
(Perlmutter, et al., 1998)

(as seen from
Hubble Space
Telescope)

Supernova
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Perlmutter, Physics Today (2003)
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Expansion History of the Universe

Perlmutter, Physics Today (2003)
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WMAP cosmic microwave background satellite
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observational constraints
on the content of

of nonrelativistic matter
and vacuum energy
(dark energy) in the
universe
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We live in a k = 0, critically closed universe.
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The Equivalence Principle

e Eotvos experiments

e meaning for freely falling bodies

e geometric implications

e geodesics



The EOTVOS Experiment

torsion balance

-//-

see www.npl.washington.edu/eotwash

Magnitude of torque on fiber: " — [r : (Fl % F2)] /|F1 4+ F2|



EotWash lab’s results: sensitivity for long range forces
is at about 1 part in 1013

www.npl.washington.edu/eotwash/
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OK, what does this mean?

- Everything falls at the same rate!

Apollo 15 astronaut
David R. Scott drops a hammer
and a feather . . . Guess what happens?

www.hg.nasa.gov/ . . ./History/SP-4214/cover.html




One begins to get a creepy feeling that the acceleration
produced by “gravity” has nothing to do with what the bodies

in question are made out of, but rather is a property of space
(spacetime) itself!



equivalence of inertial and gravitational mass:

a closed room on the Earth a clgsed room accelerating
through space at 1g

Copyright & Addizon Wasbay

cse.ssl.berkeley.edu/bmendez/ay10/2002/notes/pics



elevators in free fall . . . & the E. P.

Someone cuts your elevator’s cable and you release the two balls
that you have in your hands . .. What happens?

19g=9.8ms=2

If we make the elevator small
enough, it looks to us as if
THERE IS NO GRAVITY !!!

Cannot tell the difference between
an elevator in free fall and the
absence of gravitation.



Gravitation as Geometry

Statement of the \
Equivalence Principle:

In a sufficiently small region

of space & time we can find

a freely falling (locally Minkowski)
coordinate system in which the
effects of gravitation are absent

- the laws of physics are

the same as they are in a
Minkowski coordinate system

- <

with no gravitation. J

ds® = —dt* + dz* + dy* + dz*

Statement of the fundamental theorem
of differential geometry for 2-D surfaces:

In a sufficiently small region on any 2-D
surface, the geometry is locally flat and
Cartesian. (We can pass a tangent plane
through any point on the surface. In a
sufficiently small region around where
this tangent plane touches the surface,
the geometry will be flat, like a
Cartesian plane.)

di* = dz* + dy*



Coordinate Transformations

Follows from the chain rule: view coordinates in one system
as functions of the coordinates
In the other frame.

e.g., consider these four functions: 1" (50,61,52,€3)
with © =0,1,2,3

chain rule gives:

oxH
dot = —— - d¢°
x (% 'S
- Ozt Ozt Dt dxt 4
8§0 - d€ +8§1 dél +8§2 dE? +8§3 d&
Coordinate transformation is these 16 functions:
7]
dz* = A*,, d€ AF — ox
a0 — ————

0E



In locally inertial (Minkowski) coordinates ga (:L’) the particle is unaccelerated, and
moving on a straight line d2504

dr2 0
d (850‘ da:“) _0 OE* d?z# N 026> dxt dxv _0
dr \Oz+ dr ) OxH dr?2 Ozt OxY dr dr
multiply both sides by % and sum:
OxP 0¥ d’xt N oxP ¢ dzt dz¥ 0
ofx  Oxr  dr?2 9> QxtOxv dr dr
OxP O0&“ d? z* OxP o3¢ dxzt dz¥ 0
(?fo‘ (9:1:5 dr? ot OxrOxv| dr dr
Y ~ —~ -
P p
0", PMV
d?z” dx* dx¥
_|_ Fp . . — O

dr? HY  dr  dr



Geodesic Equation

d? P . P’O d:z:“ d:z;
d T2 dr  dr

So in this coordinate system ( x ) it looks as if the particle
experiences a “gravitational force” and is accelerated.

Note that another way to write this equation is
du”

dT

Iy, u*u” =0



Connection Coefficients
(Christoffel symbols)

o,
1

These are obviously related to how the locally Minkowski
coordinates differ from our lab coordinates x

Lo e
RY 08 QxM Oz




Now, in considering these two coordinate systems, the locally
Minkowski coordinates {£*}, and the “lab” coordinates {x*},
we will demand that the spacetime interval is always the same:

ds® = 1y g dE* dEP

oge o¢h
L (af:u dm“) (af;- de” )

_ o> 0%\ .,
—_— (naﬁ Sk 633’/2 dxt dx

e

=g, dx" dx”




Length, Area, and Volume and the Metric

Watch out! Actual physical (or proper) lengths, areas, and volumes
are not the same as coordinate values of the same quantity.

It must be kept in mind that the spacetime interval is preserved under
coordinate transformations. Think about the invariant interval
corresponding to an infinitesimal coordinate increment:

Vds? = \/%da:z

More Examples . ..



The components of the metric tensor in freely falling,
locally Minkowski coordinates {£ } are Nas

The components of the metric tensor in the “lab”
coordinate system {z*} are g,,;,



The Metric Tensor and “General” Coordinates

9ag =MN'alAN'59u0

. . . this is how the “components” of the metric transform
under a coordinate transformation, where the transformation
matrix elements are (for a so-called “coordinate basis”)

oxt
A’UJO—é — < —
Ox™

for the two different coordinate systems {CIS&} and {ZBM}

The Equivalence Principle says that at any event in spacetime

it is always possible to find a transformation to locally
Minkowski coordinates.



The general metric tensor field is g, ,, (X)

Itis symmetric: §,, v — vy Why?

Therefore, there are 10 independent functions Gu v (X)
at any event (point) in spacetime.

The metric tensor defines a coordinate system
and vice versa through the line element
ds? = Gp v dxt dz”
= oo dxz® da® + 2001 dx® dzt + Jg11 dxt da’
+24g1 9 dx! dz? + g2 9 dx? dx® + 202 3 dx? dx> + g3 3 dx> dx?



It will turn out that the Christoffel symbols can be
written in terms of the inverse metric and the
partial derivatives of the metricas . ..

19 093, 0o 093~
T 9 OxY Oz  OxV

I3, =

where the inverse metric is so-named because . . .

g"f g, = M,

We will not use this expression for the Christoffel symbols
very often . . . usually there are easier ways to get them!



General Vectors
A = Ale,
B = Be,

A-B=g,,A"B"

. . . Wwhere the metric tensor components are the inner products
of the general, curvilinear (coordinate) basis vectors . ..

€L -C = 3guv



Examples in 3-D: flat Cartesian coordinates
and spherical polar coordinates.

ds® = dz* + dy* + dz*
= dr? +r°d6? + r* sin® §d’

(z,y, 2) gij = 0ij
9z = Gyy = gz> = 1 all others =0

(7“79790) grr = 1, goo = r2, Jop = r? sin’ 0



“flat space” means Minkowski coordinates (¢, x, y, z)

ds® = —dt* + dz* + dy® + dz*

the metric for which is just 7], v

What about coordinates (¢, r, 6, @) ?

ds® = —dt? + dr? + r%d6? + r? sin® 0dy?

goo = —1, grr =1, goo = 1, oo = 2 sin” 6

BOTH COORDINATE SYSTEMS
DESCRIBE THE SAME GEOMETRY



How do we tell the difference between
between coordinates that imply
curvature (gravitational effects) and
just plain old flat space masquerading
itself with “curvilinear coordinates™?

The answer can be found in the Equivalence Principle which
says that physics is invariant under coordinate transformations,

all coordinate transformations. We are free to choose a coordinate
transformation any way we want:



The E.P. gives us enough freedom to choose coordinates at
any event (point) to transform the metric components

to be those of the Minkowski metric and the first derivatives
of the metric to be zero, thereby making the Christoffel
symbols zero as well.

Expand our “lab” coordinates in a Taylor series about point x’5 in the desired
coordinates (which will of course be the locally inertial, Minkowski coordinates) . . .

e (7)== (D (5)], 73 ()

P Tp

Similarly expand the metric functions and use

. Ozx* OzP
975 = Jap aaj/’)’ ax,é




We would like to transform the metric to the flat space, Minkowski
metric and we would like to get rid of as many derivatives of the
metric functions as possible . .. What can we do with our
freedom to choose the coordinate transformation?

10 independent numbers g, (x) 16 independent numbers A* g (x7)

99
(,g;p (xp) 40 independent numbers

OAM 4

40 independent numbers 57 (xp)

0%q,.
ox'P (‘5:1:’ v (x)

100 independent numbers

O2AM

but only 80 independent numbers
Ox'P '

(xp)

20 second derivatives of the metric which cannot in general be
set to zero with the coordinate freedom given by the E. P.



It turns out that in a weak gravitational field the time-time
component of the metric is related to the Newtonian gravitational
potential by . ..

goo ~ —1 —2¢p

G M
Where the Newtonian gravitational potential is © ~

1 R

G =
m2, 1

mp ~ 1.221 x 10%? MeV
M hc
hc~197.33 MeV tm p ~ 5
—13 m=, R
1tm = 10 cm pl
1 MeV = 1.6022 x 1013 Joules dimensionless !




Characteristic Metric Deviation

OBJECT | MASS RADIUS gfx.(t):t'::\au
(solar masses) (cm) Potential
earth 3x10% [6.4x108| ~10°
sun 1 6.9 x1010| ~106
white
~1 5x 108 ~10-4
dwarf
~0.1
neutron 1 106 0
star to 0.2




A convenient coordinate system for
weak & static (no time dependence) gravitational fields
is given by the following coordinate system/metric:

ds® = —(1+ 2¢)dt* + (1 — 2¢) (dz* + dy” + dz°)

This would be a decent description of the spacetime
geometry and gravitational effects around the earth,

the sun, and white dwarf stars, but not near the surfaces
of neutron stars.

We will explore this metric with variational principles later.















