Black Holes (Ph 161)

An introduction to General Relativity.

Lecture I




Ph 161 Black Holes
Homework Assignment 4
Due Tuesday, February 28, 2006

This should be your own work: do not copy problem solutions.

(1.) Go over your notes from class and Hartle's book and show that if the metric functions
for a given coordinate system do not depend on one of the coordinates then the corre-
sponding covariant component of four-momentum is conserved for a freely falling particle.
By “conserved” we mean that it is constant along the geodesic, the curve swept out by
the freely falling particle. The covariant components of four-momentum are the functions
Py = Guo p¥'. (Hint: we did all of this in class!)

(2.) Discuss why we do not have global “energy” conservation in General Relativity. {(Of
course, energy and momentum are always locally conserved.) How does symmetry replace

this idea? (Hint: This is what problem (1.) is all about.)

(3.) Hartle Chapter 9: problem 6.

Read Chapter 9 of Hartle’s Book



Ph 161 Black Holes
Homework Assignment 5
Due Tuesday, March 7, 2006

This should be your own work: do not copy problem solutions.

(1.) Why don’t orbits close on themselves in General Relativity? Discuss where the pre-
cession of, e.g., Mercury’s orbit comes from in terms of the conserved quantities along
geodesics in Schwarzschild geometry. (Consult Hartle Chapter 9.)

(2.) Discuss why stars supported by pressure coming from particles with relativistic speeds
become unstable in General Relativity. Look carefully at Hartle Chapter 12, problem 2
and note that the pressure forces must always balance gravitational forces for stars to be
in equilibrium.

(3.) Decide on your paper/talk topic. You may want to give a very rough outline.
Hint for (1.) & (2.): The basic answer for both of these questions is that gravity is nonlinear

in General Relativity. Spacetime curvature has mass-energy and so curves spacetime!
Therefore, unlike Newtonian gravitation, the “gravitational forces”™ in General Relativity

grow faster than 1/r%,

Read Hartle, Chapter 12



Ph 161 Black Holes
Homework Assignment 6
Due Tuesday, March 14, 2006

This should be your own work: do not copy problem solutions.

(1.) Write down the Kruskal-Szekeres metric in terms of the coordinates (U, V, 6, ¢)
discussed in class and in Chapter 12 of Hartle's book. How are these coordinates related
to the Schwarzschild coordinates (t, r, 8, )7

(a.) Draw the Kruskal spacetime diagram (U-V plane) and place on it curves corre-
sponding to Schwarzschild radial coordinate r = 0, 2M, and 4M. Justify your result.

(b.) On this Kruskal spacetime diagram place curves corresponding to Schwarzschild
timelike coordinate t = 0, —o0, +oc, —M, and +M. Justify your result.

(c.) By drawing the world line of a physical observer falling through » = 2M who
sends out periodic light beams, argue why the surface » = 2M acts like a causal horizon.
(Light lines in the Kruskal diagram are 45 degree straight lines - why?)

Hint: all of these tasks were done explicitly in class (see your notes and course web
pages): I want you to work through it again by yourself.



Papers and Talks

Talks: Wednesday, March 15, 6:00 PM - 8:30 PM
104 Peterson Hall
&
Lecture, Thursday, March 16, 9:30 AM-10:50 AM

Papers: due in class, Thursday, March 16



Core Collapse Supernovae (Types II, Ib, Ic)

I. Collapse and Bounce Epoch
Massive star (>10 solar masses) evolves in millions of years

Forms “Fe’’-core of 1.4 to 1.6 solar masses

Core goes dynamically unstable

Collapse duration of order 1 sec

Entropy-per-baryon S/k of order 1 (really “Cold”)

Shock generated at core bounce (at edge of homologous core)

Shock energy subsequently degraded by photo-dissociation of nuclei

I1. Shock Re-Heating Epoch

Time “post-bounce,” t ; from 0.1 s to 0.6 s
Neutrino processes re-energize shock, drive convection
Entropy-per-baryon S/k of order 40

II1. Hot Bubble/r-Process Epoch

t,, from1lsto20s
Entropy-per-baryon S/k of order 70 to 500
Neutrino-driven “wind”
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Nuclear Burning Stages of a 25 M., Star

Burning Density Time Scale
Stage Temperature

Hydrogen 5 keV 5gcm3 7 X 10¢ years
Helium 20 keV 700 g cm?3 5 X10° years
Carbon 80 keV g X10°gcm- 600 years

Neon 150 keV gl X 10 g cm- 1 year
Oxygen 200 keV 107 g cm3 6 months
Silicon 350 keV 33 X10"gcm- 1 day

Core 700 keV gl X10°g cm- ~ seconds
Collapse l l of order the free fall time
“Bounce” ~ 2 MeV ~1015 g cm3 ~milli-seconds
Neutron <70 MeV initial | ~1015 g cm-3 | initial cooling ~ 15-20 seconds
Star ~ keV ~ thousands of years

“nnld”




Massive Stars are Glall Refkioeralors

From core carbon/oxygen burning onward
the neutrino luminosity exceeds the photon luminosity.

Neutrinos carry energy/entropy away from the core!

Core goes from S/k~10 on the Main Sequence (hydrogen burning)
to a thermodynamically cold S/k ~1 at the onset of collapse!

e.g., the collapsing core of a supernova can be a
frozen (Coulomb) crystalline solid with a
temperature ~1 MeV!



a 30 MILLION KILOMETERS

18 SOLAR MASSES

b

500,000 KILOMETERS C 50,000 KILOMETERS d 5,000 KILOMETERS

20 MILLION DEGREES K 250 MILLION DEGREES K 3 BILLION DEGREES K
1 GRAM PER CUBIC CENTIMETER 1,000 GRAMS PER
CUBIC CENTIMETER

RADIATION NEUTRINOS

6.1 SOLAR MASSES 3.9 SOLAR MASSES 1.9 SOLAR MASSES

Weaver & Woosley, Sci Am, 1987




Inner core where the infall

velocity v is subsonic and

proportional to radius v ~ r (homologous)
and whose mass is proportional to Y 2.

Core Collapse and Explosjs

‘neutrm()s e

The rest of the original Fe-core,
- =) the outer core, falls in supersonically.

Inner core ‘“bounces” as a unit at or above
nuclear density (i.e., when nucleons touch).
Shock wave generated at this core’s edge
at bounce.

Shock’s energy subsequently is degraded
as it plows through outer core material.

Entropy jump is a factor ~10 across shock,
so NSE favors ‘‘photo-disintegrating’’ nuclei.

Pulling a nucleon out of nucleus requires
A. Mezzacappa ~ 8 MeV. This is 10°! ergs for each
0.1 solar masses transited by shock!




Neutrinos Dominate the Energetics of
Core Collapse Supernovae fx‘x}ogf
neutrino energ

Total optical + kinetic energy, 10°! ergs

Total energy released in Neutrinos, 10> ergs

GM;

L 14 10°'ergs s
TV

1
"6 Ry




Neutrino Energy Spectra
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The flux of neutrinos in a pencil of directions and energies is

L [ d< 1
dop =—Y £ E dE
Py nR3(4n)<Ev>f( Wik,

The (black body) neutrino distribution function is

1 E’

f(E,)= T’F,(n,) " Eom 4]




Neutron-to-proton ratio and energy deposition
behind shock are largely determined by these
processes:

Ve + T — D+ €




Shock Propagation
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Photon luminosity of a supernova is huge: L~ 1010 L

un

cse.ssl.berkeley.edu/




How Frequently Does Stellar Collapse Happen?

Core collapse supernova rate = 1 per galaxy per 30 years
~ 10-° per galaxy per second

Our galaxy (the milky way) is ~ 1019 years old,
so there have been ~ 102 supernovae in the history of the galaxy.

There is ~ 1 galaxy per Mpc? and the causal horizon is ~ 3000 Mpc,
so there are (currently) ~ 101° galaxies in the “observable” universe,
implying that there are ~ 10 collapse/supernova events every second
inside the causal horizon!



“Cold” Neutron Star: interior may consist of exotic phases of nuclear matter.

Neutron star

Mass
~1.5 times the Sun

Solid crust
~1 mile thick

\ Diameter

~12 miles

Heavy liquid interior
Mostly neutrons,
with other particles

http://dante.physics.montana.edu/ns_inetrior_jpg



outer crust (<103p,)
nuclei - electrons

inner crust(<<0.5p,)
neutron-rich nuclei -
neutrons -
electrons

outer core(<2p,)
neutrons -
protons -
electrons - muons

inner core (>2p,)
neutrons - protons -
hyperons - mesons -
guarks - electrons -
muons

pp= 2.8 X 10'* g/cm?®
(saturation density)

Inisjp.tokai.jaeri.go.jp/



Neutron stars are very close to
instability in General Relativity !

Suppose they accrete some matter and go dynamically
unstable and begin collapsing. What happens?

There is likely nothing to halt the collapse at this point.

Once the object shrinks inside Schwarzschild radial

coordinate r = 2M all of its material is dragged to r =0,

crushed to mathematical point, the singularity.

(Of course, quantum mechanics will intervene once all the material
is crushed inside a physical radius L ~ 103 cm .)



Collapse to a Black Hole
in Schwarzschild Geometry

I
Vacuum everywhere,
in both regions I and II.
Singularity at r = 0 at center.
r=2M

Coordinate singularity at r=2M .



Transforming the Metric Components

9ag = MN'aN'59u0

. . . this is how the “components” of the metric transform
under a coordinate transformation, where the transformation
matrix elements are (for a so-called “coordinate basis”)

Oxt
APy =
N, e
for the two different coordinate systems {CEa} and {ZBM}
If we have one solution to Einstein’s Field Equations, e.q.,

the Schwarzschild metric/coordinates, we can always find
another by a coordinate transformation.



Eddington-Finkelstein Coordinates
(v,7,0, )

Where we define v by v=t+1r+ 2M In 1

this transformation: 2 M

The vacuum Schwarzschild metric can be
transformed by this to give a new metric (line element):

r

2M
ds® = — (1 — —) dv? + 2dvdr + r2d6? + r? sin? 6dy?




Radial, null world lines
(light lines) with this metric
are:

v = constant

v—2(r—|—2M1n r

i ) = const

4

Oblique
axes

— - F = .r‘ﬂ_
=0 fiom 2 World Qutside
line of obscrver
falling
particle

Scholar.uwinnipeg.ca/.../Black_Holes.htm



Kruskal-Szekeres Coordinates

Transform the metric components from those corresponding to
the Schwarzschild coordinates (z, r, 6, ¢ ) to those corresponding to a new coordinate

system, the Kruskal-Szekeres (K-S) coordinates, (V, U, 6, ¢) .

2M
 ——
r

d32=—<

o |

2M
 ——
r

—1
) dr? + r2df? + r?sin? 6 dp?

Schwarzschild

~ 32M°3
— r

ds?

e T/2M (—dV2 + dUz) + r2dh? + r? sin? 0 dy?

where the relation between the coordinates is:

1/2 ¢
(U = <ﬁ — 1) e"/*M cosh (m)
r>2M < 12 ;
r
(. _ r/4M _: v
\V (ZM 1> e sinh (4
1/2 t
fU = (1 — ﬁ) e"/*M ginh (4—
r<2M < /
r \1/2 t
— (1= _) ’I"/4M h v
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\

Kruskal-Szekeres

> ‘(ﬁ _ 1)er/2M _ 2 _ 2

So we can regard Schwarzschild
radial coordinate r as a function
of Uand V.
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cosh r =

€

sinh x =
2

cosh? z — sinh?z = 1

sinh x

tanh x =
cosh x



r r/2M _ 772 _ /2
(557 —1)e U? -V

Lines of constant Schwarzschild radial coordinate r are curves of constant
U?-V2, that is, hyperbolae in the U-V plane (Kruskal Diagram).

The value r = 2M corresponds to the straight lines |V = 4-[J.

Note that r = 0, the singularity, corresponds to hyperbolae V = 4++/U?2 4+ 1

The value r = 4M corresponds to hyperbolae [ = 41/ V2 + ¢2

The value r = 1.5M corresponds to hyperbolae VV = :I:\/U2 + 0.25¢€0:75

il

The value r = 3M corresponds to hyperbolae [/ = :l:\/V2 + 0.5l
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Constant Schwarzschild timelike coordinate r corresponds to straight lines
on the Kruskal diagram. From the definitions of U and V given a few
slides back we can form ratios to discover that:

t |74 t U
tanh (m) =7 for r > 2M tanh (W) =V for r < 2M

t = oo corresponds to U =V

t = —oo corresponds to U = =V
t = 0 corresponds to V =0 for » > 2M
t = 0 corresponds to U = 0 for r < 2M

t = —M corresponds to V =~ —0.245U
t = M corresponds to V = 0.245U






Kruskal-Szekeres Metric

, _ 32M°
r

ds e~ T/2M (—dV2 + dU2) + r2d6? + r? sin® 0 dp?

Note that radial (d6=dg=0), null geodesics (light lines) are 45° straight lines on
a Kruskal diagram!

ds’ =0 = U = +V for radial null worldline

Light cones on a Kruskal diagram are just like in a flat
(Minkowski) spacetime diagram: 45° cones !






Since all physical particles and information must
travel on world lines contained in future-directed
light cones, we see from the Kruskal diagram that
the null surface defined by r = 2M is an HORIZON,

or event horizon, that acts like a one-way membrane.

All particles, including photons, originating inside this
surface ( » < 2M ) can never get out and they will
always wind up on the singularity at » = 0.












